Flood hazard mapping and assessment in data-scarce Nyaungdon area, Myanmar
Autoři:
Zaw Myo Khaing aff001; Ke Zhang aff001; Hisaya Sawano aff004; Badri Bhakra Shrestha aff005; Takahiro Sayama aff005; Kazuhiro Nakamura aff006
Působiště autorů:
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering and College of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu Province, China
aff001; CMA-HHU Joint Laboratory for HydroMeteorological Studies, Hohai University, Nanjing, Jiangsu Province, China
aff002; Department of Meteorology and Hydrology, Ministry of Transport and Communications, Nay Pyi Taw, Myanmar
aff003; International Centre for Water Hazard and Risk Management, Tsukuba-shi, Ibaraki-Ken, Japan
aff004; Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, Japan
aff005; Construction Technique Institute, Chuo-Ku, Tokyo, Japan
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224558
Souhrn
Torrential and long-lasting rainfall often causes long-duration floods in flat and lowland areas in data-scarce Nyaungdon Area of Myanmar, imposing large threats to local people and their livelihoods. As historical hydrological observations and surveys on the impact of floods are very limited, flood hazard assessment and mapping are still lacked in this region, making it hard to design and implement effective flood protection measures. This study mainly focuses on evaluating the predicative capability of a 2D coupled hydrology-inundation model, namely the Rainfall-Runoff-Inundation (RRI) model, using ground observations and satellite remote sensing, and applying the RRI model to produce a flood hazard map for hazard assessment in Nyaungdon Area. Topography, land cover, and precipitation are used to drive the RRI model to simulate the spatial extent of flooding. Satellite images from Moderate Resolution Imaging Spectroradiometer (MODIS) and the Phased Array type L-band Synthetic Aperture Radar-2 onboard Advanced Land Observing Satellite-2 (ALOS-2 ALOS-2/PALSAR-2) are used to validate the modeled potential inundation areas. Model validation through comparisons with the streamflow observations and satellite inundation images shows that the RRI model can realistically capture the flow processes (R2 ≥ 0.87; NSE ≥ 0.60) and associated inundated areas (success index ≥ 0.66) of the historical extreme events. The resultant flood hazard map clearly highlights the areas with high levels of risks and provides a valuable tool for the design and implementation of future flood control and mitigation measures.
Klíčová slova:
Flooding – Rain – Rivers – Simulation and modeling – Surface water – Topographic maps – Myanmar
Zdroje
1. He BS, Huang XL, Ma MH, Chang QR, Tu Y, Li Q, et al. Analysis of flash flood disaster characteristics in China from 2011 to 2015. Nat Hazards. 2018;90(1):407–20.
2. Adikari Y, Osti R, Noro T. Flood-related disaster vulnerability: an impending crisis of megacities in Asia. Journal of Flood Risk Management. 2010;3(3):185–91. doi: 10.1111/j.1753-318X.2010.01068.x
3. Hartnett M, Nash S. High-resolution flood modeling of urban areas using MSN_Flood. Water Science and Engineering. 2017;10(3):175–83.
4. Chao L, Zhang K, Li Z, Wang J, Yao C, Li Q. Applicability assessment of the CASCade Two Dimensional SEDiment (CASC2D-SED) distributed hydrological model for flood forecasting across four typical medium and small watersheds in China. Journal of Flood Risk Management. 2019;12. doi: 10.1111/jfr3.12518
5. Kale VS. Is flooding in South Asia getting worse and more frequent? Singapore Journal of Tropical Geography. 2014;35(2):161–78. doi: 10.1111/sjtg.12060
6. Yao C, Ye J, He Z, Bastola S, Zhang K, Li Z. Evaluation of flood prediction capability of the distributed Grid-Xinanjiang model driven by WRF precipitation. Journal of Flood Risk Management. 2019;12(S1):e12544. doi: 10.1111/jfr3.12544
7. Li J, Liu C. Improvement of LCM model and determination of model parameters at watershed scale for flood events in Hongde Basin of China. Water Science and Engineering. 2017;10(1):36–42.
8. Steijin RC, Barneveld HJ, Wijma E, Beckers J, Reuzenaar T, Koopmans R, et al. DRR-Team Mission Report. Netherland: 2015 September, 2015. Report No.
9. Htway O, Matsumoto J. Climatological onset dates of summer monsoon over Myanmar. International Journal of Climatology. 2011;31(3):382–93. doi: 10.1002/joc.2076
10. Khaing ZM. Flood Inundation Mapping of Minbu District by using Rainfall-Runoff-Inundation (RRI) model and ArcGIS tools. Proceedings of the Ninth Agricultural Research Conference; January, 2016; Yezin Agricultural University, Myanmar. Nay Pyi Taw, Myanmar: Yezin Agricultural University; 2016. p. 19–31.
11. Sayama T, Tatebe Y, Iwami Y, Tanaka S. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin2015. 1617–30 p.
12. Mujumdar PP, Ghosh S. CLIMATE CHANGE IMPACT ON HYDROLOGY AND WATER RESOURCES. ISH Journal of Hydraulic Engineering. 2008;14(3):1–17. doi: 10.1080/09715010.2008.10514918
13. Zehra S, Afsar S. Flood Hazard Mapping of Lower Indus Basin Using Multi-Criteria Analysis. Journal of Geoscience and Environment Protection. 2016;Vol.04 No.04:9. doi: 10.4236/gep.2016.44008
14. Zin W, Kawasaki A, Takeuchi W, San Z, Htun K, Hnin Aye T, et al. Flood Hazard Assessment of Bago River Basin, Myanmar2018. 14–21 p.
15. Zin WW, Kawasaki A, Win S. River flood inundation mapping in the Bago River Basin, Myanmar. Hydrological Research Letters. 2015;9(4):97–102. doi: 10.3178/hrl.9.97
16. Luo PP, Mu DR, Xue H, Ngo-Duc T, Dang-Dinh K, Takara K, et al. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports. 2018;8.
17. Pinos J, Timbe L. Performance assessment of two-dimensional hydraulic models for generation of flood inundation maps in mountain river basins. Water Science and Engineering. 2019;12 (1):11–8.
18. Vojtek M, Vojteková J. Flood hazard and flood risk assessment at the local spatial scale: a case study. Geomatics, Natural Hazards and Risk. 2016;7(6):1973–92. doi: 10.1080/19475705.2016.1166874
19. Zhang D-w, Quan J, Zhang H-b, Wang F, Wang H, He X-y. Flash flood hazard mapping: A pilot case study in Xiapu River Basin, China. Water Science and Engineering. 2015;8(3):195–204. doi: 10.1016/j.wse.2015.05.002
20. Alahacoon N, Matheswaran K, Pani P, Amarnath G. A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001–2016) for Flood Hazard Mapping in Sri Lanka. Remote Sens. 2018;10(3).
21. Cao C, Xu PH, Wang YH, Chen JP, Zheng LJ, Niu CC. Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas. Sustainability-Basel. 2016;8(9).
22. Li ZJ, Zhang K. Comparison of three GIS-based hydrological models. Journal of Hydrologic Engineering. 2008;13(5):364–70. doi: 10.1061/(Asce)1084-0699(2008)13:5(364)
23. Yu YH, Zhang HB, Singh VP. Forward Prediction of Runoff Data in Data-Scarce Basins with an Improved Ensemble Empirical Mode Decomposition (EEMD) Model. Water-Sui. 2018;10(4).
24. Roy NS, Kaur S. Climatology of monsoon rains of Myanmar (Burma). International Journal of Climatology. 2000;20(8):913–28. doi: 10.1002/1097-0088(20000630)20:8<913::AID-JOC485>3.0.CO;2-U
25. Sayama T. Rainfall-Runoff-Inundation (RRI) Model Technical Manual. 2014;1(4277):102.
26. Rawls W J., Brakensiek D L. Prediction of Soil Water Properties for Hydraulic Modeling 1985.
27. Sayama T, Ozawa G, Kawakami T, Nabesaka S, Fukami K. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal. 2012;57(2):298–312. doi: 10.1080/02626667.2011.644245
28. Barackman M, Brusseau ML. Chapter 8—GROUNDWATER SAMPLING. Environmental Monitoring and Characterization. Burlington: Academic Press; 2002. p. 121–39.
29. Yoshimoto S, Amarnath G. Applications of Satellite-Based Rainfall Estimates in Flood Inundation Modeling—A Case Study in Mundeni Aru River Basin, Sri Lanka. Remote Sens. 2017;9(10):998. doi: 10.3390/rs9100998
30. Devkota J, Fang X. Numerical simulation of flow dynamics in a tidal river under various upstream hydrologic conditions. Hydrological Sciences Journal. 2015;60(10):1666–89. doi: 10.1080/02626667.2014.947989
31. Allen GH, Pavelsky TM. Patterns of river width and surface area revealed by the satellite‐derived North American River Width data set. Geophys Res Lett. 2015;42(2):395–402. doi: 10.1002/2014GL062764
32. Kwak Y, Arifuzzanman B, Iwami Y. Prompt Proxy Mapping of Flood Damaged Rice Fields Using MODIS-Derived Indices. Remote Sens. 2015;7(12):15805. doi: 10.3390/rs71215805
33. Komi K, Neal J, Trigg MA, Diekkrüger B. Modelling of flood hazard extent in data sparse areas: a case study of the Oti River basin, West Africa. Journal of Hydrology: Regional Studies. 2017;10:122–32. doi: 10.1016/j.ejrh.2017.03.001
34. Brivio P, Colombo R, Maggi M, Tomasoni R. Integration of remote sensing data and GIS for accurate mapping of flooded areas 2002. 429–41 p.
35. Islam AS, Bala SK, Haque MA. Flood inundation map of Bangladesh using MODIS time‐series images. Journal of Flood Risk Management. 2010;3(3):210–22. doi: 10.1111/j.1753-318X.2010.01074.x
36. Lang M, Ramsbottom D, Frank E, Weisgerber A, Beros M, Klijn F, et al. Developing a national programme of flood risk management measures: Moldova. E3S Web of Conferences. 2016;7:23003. doi: 10.1051/e3sconf/20160723003
37. Zhang K, Xue XW, Hong Y, Gourley JJ, Lu N, Wan ZM, et al. iCRESTRIGRS: a coupled modeling system for cascading flood-landslide disaster forecasting. Hydrol Earth Syst Sci. 2016;20(12):5035–48.
38. Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, et al. Characterising performance of environmental models. Environmental Modelling & Software. 2013;40:1–20. doi: 10.1016/j.envsoft.2012.09.011
39. Zischg AP, Mosimann M, Bernet DB, Röthlisberger V. Validation of 2D flood models with insurance claims. Journal of Hydrology. 2018;557:350–61. doi: 10.1016/j.jhydrol.2017.12.042
40. Falter D, Schröter K, Dung NV, Vorogushyn S, Kreibich H, Hundecha Y, et al. Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. J Hydrol. 2015;524(182–193).
41. He XG, Hong Y, Vergara H, Zhang K, Kirstetter PE, Gourley JJ, et al. Development of a coupled hydrological-geotechnical framework for rainfall-induced landslides prediction. J Hydrol. 2016;543:395–405.
42. Falter D, Vorogushyn S, Lhomme J, Apel H, Gouldby B, Merz B. Hydraulic model evaluation for large-scale flood risk assessments. Hydrological Processes. 2013;27(9):1331–40.
43. Nones M. Flood hazard maps in the European context. Water International. 2017;42(3):324–32.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy