A digital collection of rare and endangered lemurs and other primates from the Duke Lemur Center
Autoři:
Gabriel S. Yapuncich aff001; Addison D. Kemp aff001; Darbi M. Griffith aff001; Justin T. Gladman aff003; Erin Ehmke aff004; Doug M. Boyer aff001
Působiště autorů:
Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
aff001; Department of Anthropology, University of Texas, Austin, Texas, United States of America
aff002; Shared Materials Instrumentation Facility (SMIF), Duke University, Durham, North Carolina, United States of America
aff003; Duke Lemur Center, Duke University, Durham, North Carolina, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0219411
Souhrn
Scientific study of lemurs, a group of primates found only on Madagascar, is crucial for understanding primate evolution. Unfortunately, lemurs are among the most endangered animals in the world, so there is a strong impetus to maximize as much scientific data as possible from available physical specimens. MicroCT scanning efforts at Duke University have resulted in scans of more than 100 strepsirrhine cadavers representing 18 species from the Duke Lemur Center. An error study of the microCT scanner recovered less than 0.3% error at multiple resolution levels. Scans include specimen overviews and focused, high-resolution selections of complex anatomical regions (e.g., cranium, hands, feet). Scans have been uploaded to MorphoSource, an online digital repository for 3D data. As captive (but free ranging) individuals, these specimens have a wealth of associated information that is largely unavailable for wild populations, including detailed life history data. This digital collection maximizes the information obtained from rare and endangered animals with minimal degradation of the original specimens.
Klíčová slova:
Computed axial tomography – Extremophiles – Feet – Iodine – Primates – Lemurs – Bushbabies
Zdroje
1. Schwitzer C, Mittermeier RA, Johnson SE, Donati G, Irwin M, Peacock H, et al. Averting lemur extinctions amid Madagascar's political crisis. Science. 2014; 343:842–843. doi: 10.1126/science.1245783 24558147
2. Schwitzer C, Mittermeier RA, Davies N, Johnson S, Ratsimbazafy J, Razafindramanana J, et al. Lemurs of Madagascar: A strategy for their conservation 2013–2016. Bristol, UK: IUCN SSC Primate Specialist Group, Bristol Conservation and Science Foundation, and Conservation International; 2013.
3. Cartmill M. Pads and claws in arboreal locomotion. In: Jenkins FA Jr, editor. Primate Locomotion. New York: Academic Press; 1974. pp. 45–83.
4. Kay RF. The functional adaptations of primate molar teeth. Am J Phys Anthropol. 1975; 43:195–215. doi: 10.1002/ajpa.1330430207 810034
5. Nishimura AC, Russo GA. Does cortical bone thickness in the last sacral vertebra differ among tail types in primates? Am J Phys Anthropol. 2017; 162:757–67. doi: 10.1002/ajpa.23167 28075029
6. Bornbusch SL, Greene LK, McKenney EA, Volkoff SJ, Midani FS, Joseph G, et al. A comparative study of gut microbiomes in captive nocturnal strepsirrhines. Am J Primatol. 2019; 13:e22986.
7. Klopfer PH, Jolly A. The stability of territorial boundaries in a lemur troop. Folia Primatol. 1970; 12:199–208. doi: 10.1159/000155289 5417920
8. Teichroeb JA, Vining AQ. Navigation strategies in three nocturnal lemur species: diet predicts heuristic use and degree of exploratory behavior. Anim Cognit. 2019; 22:343–354.
9. MacLean EL, Merritt DJ, Brannon EM. Social complexity predicts transitive reasoning in prosimian primates. Anim Behav. 2008; 76:479–486. doi: 10.1016/j.anbehav.2008.01.025 19649139
10. Samson DR, Vining A, Nunn CL. Sleep influences cognitive performance in lemurs. Anim Cog. 2019; 22:697–706.
11. Hylander WL. In vivo bone strain in the mandible of Galago crassicaudatus. Am J Phys Anthropol. 1977; 46:309–326. doi: 10.1002/ajpa.1330460212 403774
12. Fabre AC, Granatosky MC, Hanna JB, Schmitt D. Do forelimb shape and peak forces co‐vary in strepsirrhines? Am J Phys Anthropol. 2018; 167:602–614. doi: 10.1002/ajpa.23688 30159895
13. Buettner-Janusch J, Hill RL. Molecules and monkeys. Science. 1965; 147:836–842. doi: 10.1126/science.147.3660.836 14245766
14. Larsen PA, Harris RA, Liu Y, Murali SC, Campbell CR, Brown AD, et al. Hybrid de novo genome assembly and centromere characterization of the gray mouse lemur (Microcebus murinus). BMC Biol. 2017; 15:110. doi: 10.1186/s12915-017-0439-6 29145861
15. Cartmill M. Rethinking primate origins. Science. 1974; 184:436–443. doi: 10.1126/science.184.4135.436 4819676
16. Tattersall I. Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates). Anthropol Pap Am Nat Hist Mus. 1973; 1:1–110.
17. Gunnell GF, Boyer DM, Friscia AR, Heritage S, Manthi FK, Miller ER, et al. Fossil lemurs from Egypt and Kenya suggest an African origin for Madagascar’s aye-aye. Nature Commun. 2018; 9:3193.
18. Yapuncich GS, Feng HJ, Dunn RH, Seiffert ER, Boyer DM. Vertical support use and primate origins. Sci Reports. 2019; 9:12341.
19. Smith TD, Martell MC, Rossie JB, Bonar CJ, Deleon VB. Ontogeny and microanatomy of the nasal turbinals in lemuriformes. Anat Rec. 2016; 299:1492–510.
20. Huq E, Taylor AB, Su Z, Wall CE. Fiber type composition of epaxial muscles is geared toward facilitating rapid spinal extension in the leaper Galago senegalensis. Am J Phys Anthropol. 2018; 166:95–106. doi: 10.1002/ajpa.23405 29318571
21. Burrows AM, Omstead KM, Deutsch AR, Gladman JT, Hartstone-Rose A. Reverse dissection and diceCT reveal otherwise hidden data in the evolution of the primate face. JoVE: J Vis Exp. 2019; 143:e58394.
22. Yapuncich GS. Body mass prediction from dental and postcranial measurements in primates and their nearest relatives. Ph. D. Dissertation, Duke University. 2017.
23. Kemp AD. Primate binocular vision: adaptive significance in grasping and locomotion. Ph. D. Dissertation, University of Texas, Austin. 2019.
24. Boyer DM, Gunnell GF, Kaufman S, McGeary TM. Morphosource: Archiving and sharing 3-d digital specimen data. Paleontol Soc Pap. 2016; 22:157–181.
25. Mittermeier RA, Fleagle JG. A primate distribution program to end wastage of sacrificed specimens. Lab Prim News. 1973; 12: 1–3.
26. Gordon AD, Marcus E, Wood B. Great ape skeletal collections: making the most of scarce and irreplaceable resources in the digital age. Am J Phys Anthropol. 2013; 152:2–32. doi: 10.1002/ajpa.22391 24249590
27. Adams JW, Olah A, McCurry MR, Potze S. Surface model and tomographic archive of fossil primate and other mammal holotype and paratype specimens of the Ditsong National Museum of Natural History, Pretoria, South Africa. PLoS One. 2015; 10:e0139800. doi: 10.1371/journal.pone.0139800 26441324
28. Copes LE, Lucas LM, Thostenson JO, Hoekstra HE, Boyer DM. A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data. Sci Data. 2016; 3:160001. doi: 10.1038/sdata.2016.1 26836025
29. Shi JJ, Westeen EP, Rabosky DL. Digitizing extant bat diversity: An open-access repository of 3D μCT-scanned skulls for research and education. PLoS One. 2018; 13:e0203022. doi: 10.1371/journal.pone.0203022 30226875
30. Zehr SM, Roach RG, Haring D, Taylor J, Cameron FH, Yoder AD. Life history profiles for 27 strepsirrhine primate taxa generated using captive data from the Duke Lemur Center. Sci Data. 2014; 1:140019. doi: 10.1038/sdata.2014.19 25977776
31. Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, et al. Diffusible iodine‐based contrast‐enhanced computed tomography (diceCT): an emerging tool for rapid, high‐resolution, 3‐D imaging of metazoan soft tissues. J Anat. 2016; 228:889–909. doi: 10.1111/joa.12449 26970556
32. Metscher BD. Micro-CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009a; 9:11.
33. Metscher BD. Micro-CT for developmental biology: a versatile tool for high-contrast 3-D imaging at histological resolutions. Dev Dyn. 2009b; 238:632–640.
34. Mizutani R, Suzuki Y. X-ray microtomography in biology. Micron 2012; 43:104–115. doi: 10.1016/j.micron.2011.10.002 22036251
35. Pauwels E, Van Loo E, Cornillie P, Brabant L, van Hoorebeke L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. J Microsc. 2013; 250:21–31. doi: 10.1111/jmi.12013 23432572
36. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012; 9:671. doi: 10.1038/nmeth.2089 22930834
37. Preibisch S, Saalfeld S, Tomancak P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 2009; 25:1463–1465. doi: 10.1093/bioinformatics/btp184 19346324
38. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012; 9:676. doi: 10.1038/nmeth.2019 22743772
39. Arnold C, Matthews LJ, Nunn CL. The 10kTrees website: a new online resource for primate phylogeny. Evol Anthropol. 2010; 19:114–118.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy