Live observation of the oviposition process in Daphnia magna
Autoři:
Dohyong Lee aff001; Ji Soo Nah aff001; Jungbin Yoon aff001; Won Kim aff001; Kunsoo Rhee aff001
Působiště autorů:
Department of Biological Sciences, Seoul National University, Seoul, Korea
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224388
Souhrn
In favorable conditions, Daphnia magna undergoes parthenogenesis to increase progeny production in a short time. However, in unfavorable conditions, Daphnia undergoes sexual reproduction instead and produces resting eggs. Here, we report live observations of the oviposition process in Daphnia magna. We observed that the cellular contents flowed irregularly through the narrow egg canal during oviposition. Amorphous ovarian eggs developed an oval shape immediately after oviposition and, eventually, a round shape. Oviposition of resting eggs occurred in a similar way. Based on the observations, we propose that, unlike Drosophila eggs, Daphnia eggs cannot maintain cytoplasmic integrity during oviposition. We also determined that the parthenogenetic eggs were activated within 20 min, as demonstrated by vitelline envelope formation. Therefore, it is plausible that the eggs of Daphnia magna may be activated by squeezing pressure during oviposition.
Klíčová slova:
Drosophila melanogaster – Light microscopy – Oocytes – Ovaries – Oviposition – Sexual reproduction – Daphnia – Parthenogenesis
Zdroje
1. Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C. Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. Evodevo. 2014; 5:12. doi: 10.1186/2041-9139-5-12 24641948.
2. Hiruta C, Tochinai S. How does the alteration of meiosis evolve to parthenogenesis? Case study in a water flea Daphnia pulex. In tech. 2012. doi: 10.5772/29558
3. Hebert PDN. The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev. 1978; 53:387–426.
4. Hiruta C, Nishida C, Tochinai S. Abortive meiosis in the oogenesis of parthenogenetic Daphnia pulex. Chromosome Res. 2010; 18:833–840. doi: 10.1007/s10577-010-9159-2 20949314.
5. Hiruta C, Tochinai S. Formation and structure of the ephippium (resting egg case) in relation to molting and egg laying in the water flea Daphnia pulex De Geer (Cladocera: Daphniidae). J Morphol. 2014; 275:760–767. doi: 10.1002/jmor.20255 24500908.
6. Ebert D. Ecology, Epidemiology, and evolution of parasitism in Daphnia. Bethesda (MD): National Center for Biotechnology Information (US); 2005. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2036/
7. Rossi F. Comparative observations on the female reproductive system and parthenogenetic oogenesis in Cladocera. Bolletino di zoologia. 1980; 47:21–38. doi: 10.1080/11250008009440317
8. Jaglarz MK, Kubrakiewicz J, Bilinski SM. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance. Arthropod Struct Dev. 2014; 43:349–360. doi: 10.1016/j.asd.2014.05.003 24858464.
9. Anderson E. Formation of primary envelope during oocyte differentiation in teleosts. J Cell Biol. 1967; 35:193–212. doi: 10.1083/jcb.35.1.193 4863048.
10. Masuda K, Iuchi I, Yamagami K. Analysis of hardening of the egg envelope (chorion) of the fish, Oryzias Latipes. Dev Growth Differ. 1991; 33:75–83. doi: 10.1111/j.1440-169X.1991.00075.x
11. Kugler JM, Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly (Austin). 2009; 3:15–28. doi: 10.4161/fly.3.1.7751 19182536.
12. Heifetz Y, Yu J, Wolfner MF. Ovulation triggers activation of Drosophila oocytes. Dev Biol. 2001; 234:416–424. doi: 10.1006/dbio.2001.0246 11397010.
13. Went DF, Krause G. Egg activation in Pimpla turionellae (Hym.). Naturwissenschaften. 1974; 61:407–408. doi: 10.1007/bf00622633 4474605.
14. Went DF. Egg activation and parthenogenetic reproduction in insects. Biol. Rev. 1982; 57:319–344. doi: 10.1111/j.1469-185X.1982.tb00371.x
15. Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, et al. Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci U S A. 2015; 112:791–6. doi: 10.1073/pnas.1420589112 25564670.
16. Horner VL, Wolfner MF. Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn. 2008; 237:527–544. doi: 10.1002/dvdy.21454 18265018.
17. Doane WW. Developmental physiology of the mutant female sterile(2) adipose of Drosophila melanogaster. II. Effects of altered environment and residual genome on its expression. J Exp Zool. 1960; 145:23–41. doi: 10.1002/jez.1401450103 13723228.
18. Page AW, Orr-Weaver TL. Activation of the meiotic divisions in Drosophila oocytes. Dev Biol. 1997; 183:195–207. doi: 10.1006/dbio.1997.8506 9126294.
19. Sartain CV, Wolfner MF. Calcium and egg activation in Drosophila. Cell Calcium. 2013; 53:10–15. doi: 10.1016/j.ceca.2012.11.008 23218670.
20. Pongtippatee-Taweepreda P, Chavadej J, Plodpai P, Pratoomchart B, Sobhon P, Weerachatyanukul W, et al. Egg activation in the black tiger shrimp Penaeus monodon. Aquaculture. 2004; 234:183–198. doi: 10.1016/j.aquaculture.2003.10.036
21. Pongtippatee P, Putthawat W, Dungsuwan P, Weerachartyanukul W, Withyachumnarnkul B. Hatching envelope formation in the egg of the black tiger shrimp, Penaeus monodon(Decapoda, Penaeidae). Aquaculture Res. 2012; 44:1358–1369. doi: 10.1111/j.1365-2109.2012.03141.x
22. Pillai MC, Clark WH Jr. Development of cortical vesicles in Sicyonia ingentis ova: their heterogeneity and role in elaboration of the hatching envelope. Mol Reprod Dev. 1990; 26:78–89. doi: 10.1002/mrd.1080260112 F2346649.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy