#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evolution of high tooth replacement rates in theropod dinosaurs


Autoři: Michael D. D’Emic aff001;  Patrick M. O’Connor aff003;  Thomas R. Pascucci aff001;  Joanna N. Gavras aff001;  Elizabeth Mardakhayava aff001;  Eric K. Lund aff003
Působiště autorů: Department of Biology, Adelphi University, Garden City, New York, United States of America aff001;  Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America aff002;  Department of Biomedical Sciences, Ohio University, Athens, Ohio, United States of America aff003;  Ohio Center for Ecology and Evolutionary Studies, Athens, Ohio, United States of America aff004;  Department of Biological Sciences, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224734

Souhrn

Tooth replacement rate is an important contributor to feeding ecology for polyphyodont animals. Dinosaurs exhibit a wide range of tooth replacement rates, mirroring their diverse craniofacial specializations, but little is known about broad-scale allometric or evolutionary patterns within the group. In the current broad but sparse dinosaurian sample, only three non-avian theropod tooth replacement rates have been estimated. We estimated tooth formation and replacement rates in three additional non-avian theropod dinosaurs, the derived latest Cretaceous abelisaurid Majungasaurus and the more generalized Late Jurassic Allosaurus and Ceratosaurus. We created the largest dental histological and CT dataset for any theropod dinosaur, sectioning and scanning over a dozen toothed elements of Majungasaurus and several additional elements from the other two genera. Using this large sample, we created models of tooth formation time that allow for theropod replacement rates to be estimated non-destructively. In contrast to previous results for theropods, we found high tooth replacement rates in all three genera, with Allosaurus and Ceratosaurus rates of ~100 days and 56 days for Majungasaurus. The latter rate is on par with those of derived herbivorous dinosaurs including some neosauropods, hadrosaurids, and ceratopsians. This elevated rate may be a response to high rates of tooth wear in Majungasaurus. Within Dinosauria, there is no relationship between body mass and tooth replacement rate and no trends in replacement rate over time. Rather, tooth replacement rate is clade-specific, with elevated rates in abelisaurids and diplodocoids and lower rates in coelurosaurs.

Klíčová slova:

Computed axial tomography – Dentition – Dinosaurs – Herbivory – Phylogenetics – Teeth – Theropoda – Sauropoda


Zdroje

1. Erickson GM. Incremental lines of von Ebner in dinosaurs and the assessment of tooth replacement rates using growth line counts. Proc Nat Acad Sci. 1996a;93: 14623–14627.

2. D’Emic MD, Whitlock JA, Smith KM, Fisher DC, Wilson JA. Evolution of high tooth replacement rates in sauropod dinosaurs. PLoS ONE 2013a;8: e69235.

3. Brink KS, Reisz RR, LeBlanc ARH, Chang RS, Lee YC, Chiang CC, Huang T, Evans DC. Developmental and evolutionary novelty in the serrated teeth of theropod dinosaurs. Sci Rep. 2015;5: 12338 doi: 10.1038/srep12338 26216577

4. Button K, You H, Kirkland J, Zanno L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ. 2017;5: e4129. doi: 10.7717/peerj.4129 29250467

5. Zhou YC, Sullivan C, Zhang FC. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. PalAs.; 2019: 57: 38–50.

6. Erickson GM. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts. J Morph. 1996b;228: 189–194.

7. Sampson SD, Witmer LM. Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleo. Mem. 2007;8: 32–102.

8. Smith JB. Dental morphology and variation in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. J Vert Paleo Mem. 2007;8: 103–126.

9. Padian K, Lamm ET. Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis and Interpretations. University of California Press; 2013.

10. Scheyer TM, Moser M. Survival of the thinnest: rediscovery of Bauer’s (1898) ichthyosaur tooth sections from Upper Jurassic lithographic limestone quarries, south Germany. Swiss J Geosci. 2011;104 (Suppl 1), S147–S157.

11. Dumont M, Tafforeau P, Bertin T, Bhullar B.-A. Field D, Schulp A, Strilisky B, Thivichon-Prince B, Viriot L, Louchart A. 2016 Synchrotron imaging of dentition provides insights into the biology of Hesperornis and Ichthyornis, the “last” toothed birds. BMC Evo Bio. 2016;16: 1–28.

12. Mishima H, Iwasa Y, Yokota R, Elsey RM. The short-period incremental lines in dentin of Alligatoridae teeth. In: Kobayaski I, Ozawa H, editors. Biomineralization (BIOM2001): formation, diversity, evolution and application, Proceedings of the 8th International Symposium on Biomineralization Tokai University Press, Kanagawa, 2003. pp. 317–320.

13. Bromage TG, Lacruz RS, Hogg R, Goldman HM, McFarlin SC, Warshaw J, Dirks W, Perez-Ochoa A, Smolyar I, Enlow DH, Boyde A. Lamellar bone is an incremental tissue reconciling enamel rhythms, body size, and organismal life history. Calcif Tiss Int. 2009;84: 388–404.

14. Hammer Ø., Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeont Elect 2001;4: 1–9.

15. Kosch JCD, Schwarz-Wings D, Fritsch G, Issever AS. Tooth replacement and dentition in Giraffatitan brancai. J Vert Paleo, Programs and Abstracts, 2014; 162.

16. Schwarz D, Kosch JCD, Fritsch G, Hildebrandt T. Dentition and tooth replacement of Dicraeosaurus hansemanni (Dinosauria, Sauropoda, Diplodocoidea) from the Tendaguru Formation of Tanzania, J Vert Paleo, 2015;35: e1008134.

17. Benson RBJ, Campione NE, Carrano MT, Mannion PD, Sullivan C, Upchurch P, Evans D. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 2014;12, 1001853.

18. Coria RA, Chiappe LM. Tooth replacement in a sauropod premaxilla from the Upper Cretaceous of Patagonia, Argentina. Ameghin. 2001;38: 463–466.

19. D’Emic MD, Mannion PD, Upchurch P, Benson RBJ, Pang Q, Cheng Q. Osteology of Huabeisaurus allocotus (Sauropoda: Titanosauriformes) from the Upper Cretaceous of China. PLoS ONE 2013b;8: e69375.

20. Campione NE, Evans DC. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 2012;10: 1–21. doi: 10.1186/1741-7007-10-1 22214525

21. Campione NE, Evans DC, Brown CM, Carrano MT. Body mass estimation in non-avian bipeds using a theoretical conversion to quadruped stylopodial proportions. Methods Ecol Evol. 2014;5: 913–923.

22. Chure D, Brooks BB, Whitlock JA, Wilson JA. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition. Naturwiss. 2010;97: 379–391. doi: 10.1007/s00114-010-0650-6 20179896

23. Sereno PC, Wilson JA, Witmer LM, Whitlock JA, Maga A, Ide O, Rowe TA. Structural Extremes in a Cretaceous Dinosaur. PLoS ONE 2007; 2: e1230. doi: 10.1371/journal.pone.0001230 18030355

24. Renvoisé E, Michon F. An evo-devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Fron Phys 2014;5: 1–12.

25. Edmund AG. Tooth replacement phenomena in lower vertebrates. Royal Ontario Museum Life Science Division Contribution 1960;52: 1–190.

26. Rogers R, Krause DWK, Rogers KC. Cannibalism in the Madagascan dinosaur Majungatholus atopus. Nature 2003;422: 515–518. doi: 10.1038/nature01532 12673249

27. Sereno PC, Brusatte S. Basal abelisaurid and carcharodontosaurid theropods from the Lower Cretaceous Elrhaz Formation of Niger. Acta Palaeo Pol. 2008;53: 15–46.

28. Gignac P, Erickson GM. The biomechanics behind extreme osteophagy in Tyrannosaurus rex. J Vert Paleo, Programs and Abstracts, 2018; 134.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#