Molecular evolution of genes encoding allergen proteins in the peanuts genus Arachis: Structural and functional implications
Autoři:
Khidir W. Hilu aff001; Sheena A. Friend aff001; Viruthika Vallanadu aff001; Anne M. Brown aff002; Louis R. Hollingsworth, IV aff003; David R. Bevan aff003
Působiště autorů:
Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
aff001; Research and Informatics, Virginia Tech, Blacksburg, VA, United States of America
aff002; Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222440
Souhrn
Food allergies are severe immune responses to plant and animal products mediated by immunoglobulin E (IgE). Peanuts (Arachis hypogaea L.) are among the top 15 crops that feed the world. However, peanuts is among the “big eight food allergens”, and allergies induced by peanuts are a significant public health problem and a life-threatening concern. Targeted mutation studies in peanuts demonstrate that single residue alterations in these allergen proteins could result in substantial reduction in allergenicity. Knowledge of peanut allergen proteins is confined to the allotetraploid crop and its two progenitors. We explored frequencies and positions of natural mutations in the hyperallergenic homologues Ara h 2 and Ara h 6 in newly generated sequences for 24 Arachis wild species and the crop species, assessed potential mutational impact on allergenicity using immunoblots and structural modeling, and evaluated whether these mutations follow evolutionary trends. We uncovered a wealth of natural mutations, both substitutions and gaps, including the elimination of immunodominant epitopes in some species. These molecular alterations appear to be associated with substantial reductions in allergenicity. The study demonstrated that Ara h 2 and Ara h 6 follow contrasting modes of natural selection and opposing mutational patterns, particularly in epitope regions. Phylogenetic analysis revealed a progressive trend towards immunodominant epitope evolution in Ara h 2. The findings provide valuable insight into the interactions among mutations, protein structure and immune system response, thus presenting a valuable platform for future manipulation of allergens to minimize, treat or eliminate allergenicity. The study strongly encourages exploration of genepools of economically important plants in allergenicity research.
Klíčová slova:
Allergens – Evolutionary immunology – Peanut – Protein structure – Protein structure prediction – Sequence alignment – Sequence motif analysis – Substitution mutation
Zdroje
1. Lehrer SB, Ayuso R, Reese G. Current understanding of food allergens. Ann N Y Acad Sci. 2002;964:69–85.
2. Grundy J, Matthews S, Bateman B, Dean T, Arshad SH. Rising prevalence of allergy to peanut in children: Data from 2 sequential cohorts. J Allergy Clin Immunol. 2002;110(5):784–9.
3. Sicherer SH, Muñoz-Furlong A, Godbold JH, Sampson HA. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. Journal of Allergy and Clinical Immunology. 2010;125(6):1322–6.
4. Branum AM, Lukacs SL. Food allergy among U.S. children: trends in prevalence and hospitalizations. NCHS Data Brief. 2008(10):1–8. 19389315
5. Carr WW. Clinical pearls and pitfalls: peanut allergy. Allergy Asthma Proc. 2005;26(2):145–7.
6. Bock SA, Muñoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001;107(1):191–3.
7. Maleki SJ, Viquez O, Jacks T, Dodo H, Champagne ET, Chung S-Y, et al. The major peanut allergen, Ara h 2, functions as a trypsin inhibitor, and roasting enhances this function. Journal of Allergy and Clinical Immunology. 2003;112(1):190–5.
8. Blumchen K, Ulbricht H, Staden U, Dobberstein K, Beschorner J, de Oliveira LCL, et al. Oral peanut immunotherapy in children with peanut anaphylaxis. J Allergy Clin Immunol. 2010;126(1):83–91.e1.
9. Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, et al. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences. 2016;113(24):6785–90.
10. Shewry PR, Halford NG. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot. 2002;53(370):947–58. doi: 10.1093/jexbot/53.370.947 11912237
11. Breiteneder H, Radauer C. A classification of plant food allergens☆. Journal of Allergy and Clinical Immunology. 2004;113(5):821–30.
12. Pomés A. Relevant B Cell Epitopes in Allergic Disease. International Archives of Allergy and Immunology. 2010;152(1):1–11.
13. Mueller GA, Maleki SJ, Pedersen LC. The molecular basis of peanut allergy. Curr Allergy Asthma Rep. 2014;14(5):429.
14. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, et al. Identification and Mutational Analysis of the Immunodominant IgE Binding Epitopes of the Major Peanut AllergenAra h 2. Archives of Biochemistry and Biophysics. 1997;342(2):244–53.
15. Barre A, Borges J-P, Culerrier R, Rougé P. Homology modelling of the major peanut allergen Ara h 2 and surface mapping of IgE-binding epitopes. Immunology Letters. 2005;100(2):153–8.
16. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clinical <html_ent glyph = "@amp;" ascii = "&"/> Experimental Allergy. 2004;34(4):583–90.
17. Bernard H, Guillon B, Drumare M-F, Paty E, Dreskin SC, Wal J-M, et al. Allergenicity of peanut component Ara h 2: Contribution of conformational versus linear hydroxyproline-containing epitopes. Journal of Allergy and Clinical Immunology. 2015;135(5):1267–74.e8.
18. Koid AE, Chapman MD, Hamilton RG, van Ree R, Versteeg SA, Dreskin SC, et al. Ara h 6 Complements Ara h 2 as an Important Marker for IgE Reactivity to Peanut. Journal of Agricultural and Food Chemistry. 2014;62(1):206–13.
19. Bernard HM L.; DRUMARE M. F.; PATY E.; SCHEINMANN P., R.; THAÏ AJMW. Identification of a New Natural Ara h 6 Isoform and of Its Proteolytic Product as Major Allergens in. Journal of Agriculture and food Chemistry. 2007;55:7.
20. Zhuang Y, Dreskin SC. Redefining the major peanut allergens. Immunologic Research. 2013;55(1–3):125–34.
21. Kulis M, Chen X, Lew J, Wang Q, Patel OP, Zhuang Y, et al. The 2S albumin allergens of Arachis hypogaea, Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanut-allergic mice. Clin Exp Allergy. 2012;42(2):326–36. doi: 10.1111/j.1365-2222.2011.03934.x 22288514
22. Blankestijn MA, Otten HG, Suer W, Weimann A, Knol EF, Knulst AC. Specific IgE to peanut 2S albumin Ara h 7 has a discriminative ability comparable to Ara h 2 and 6. Clin Exp Allergy. 2018;48(1):60–5.
23. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker W-M. Selective Cloning of Peanut Allergens, Including Profilin and 2S Albumins, by Phage Display Technology. International Archives of Allergy and Immunology. 1999;119(4):265–74.
24. Schmidt HK, Susanne; Gelhaus, Christoph; Petersen, Arnd; Janssen, Ottmar; Becker, Wolf-Meinhard. Detection and Structural Characterization of Natural Ara h 7, the Third Peanut Allergen of the 2S Albumin Family. Journal of Proteome Reserach. 2010;9:3701–9.
25. Codreanu F, Collignon O, Roitel O, Thouvenot B, Sauvage C, Vilain AC, et al. A novel immunoassay using recombinant allergens simplifies peanut allergy diagnosis. Int Arch Allergy Immunol. 2011;154(3):216–26.
26. Hilu KW, Stalker HT. Genetic relationships between peanut and wild species ofArachis sect.Arachis (Fabaceae): Evidence from RAPDs. Plant Systematics and Evolution. 1995;198(3):167–78.
27. Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K. RFLP and Cytogenetic Evidence on the Origin and Evolution of Allotetraploid Domesticated Peanut, Arachis hypogaea (Leguminosae). American Journal of Botany. 1996;83(10):1282.
28. Chatel J-M, Bernard H, Orson FM. Isolation and Characterization of Two Complete Ara h 2 Isoforms cDNA. International Archives of Allergy and Immunology. 2003;131(1):14–8.
29. Ratnaparkhe MB, Lee T-H, Tan X, Wang X, Li J, Kim C, et al. Comparative and evolutionary analysis of major peanut allergen gene families. Genome Biol Evol. 2014;6(9):2468–88.
30. Ramos ML, Huntley JJ, Maleki SJ, Ozias-Akins P. Identification and characterization of a hypoallergenic ortholog of Ara h 2.01. Plant Molecular Biology. 2009;69(3):325–35.
31. Burks AW, King N, Bannon GA. Modification of a Major Peanut Allergen Leads to Loss of IgE Binding. International Archives of Allergy and Immunology. 1999;118(2–4):313–4. doi: 10.1159/000024114 10224425
32. King N, Helm R, Stanley JS, Vieths S, Lüttkopf D, Hatahet L, et al. Allergenic characteristics of a modified peanut allergen. Molecular Nutrition & Food Research. 2005;49(10):963–71.
33. Friend SA, Quandt D, Tallury SP, Stalker HT, Hilu KW. Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular phylogeny. Plant Systematics and Evolution. 2010;290(1–4):185–99.
34. Milla SR, Isleib TG, Stalker HT. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome. 2005;48(1):1–11.
35. Voshell SM, Baldini RM, Kumar R, Tatalovich N, Hilu KW. Canary grasses (Phalaris, Poaceae): Molecular phylogenetics, polyploidy and floret evolution. Taxon. 2011;60(5):1306–16.
36. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. doi: 10.1093/nar/gkh340 15034147
37. Müller K. QUICKALIGN. 1.03 ed2004.
38. Kelchner SA. The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics. Annals of the Missouri Botanical Garden. 2000;87(4):482.
39. Maddison DR, Maddison WP. MacClade 4: Analysis of Phylogeny and Character Evolution. 4.08a ed. doi: 10.1093/aob/mci014
40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis. 6.0 ed. doi: 10.1093/molbev/mst197 24132122
41. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 1982;157(1):105–32.
42. Korber B. Computational and evolutionary analysis of HIV molecular sequences. Boston, MA: Kluwer Academic Publishers; 2001 2001. 300 p.
43. Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution. 1986;3(5):418–26. doi: 10.1093/oxfordjournals.molbev.a040410 3444411
44. Ota T, Nei M. Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site. Molecular Biology and Evolution. 1994;11(4):613–9. 8078400
45. Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, et al. Gene-wide identification of episodic selection. Mol Biol Evol. 2015;32(5):1365–71. doi: 10.1093/molbev/msv035 25701167
46. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013;30(5):1196–205. doi: 10.1093/molbev/mst030 23420840
47. Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Research. 2013;41(Web Server issue):W349–57.
48. Power TD, Ivanciuc O, Schein CH, Braun W. Assessment of 3D models for allergen research. Proteins: Structure, Function, and Bioinformatics. 2013;81(4):545–54.
49. Mueller GA, Gosavi RA, Pomés A, Wünschmann S, Moon AF, London RE, et al. Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy. 2011;66(7):878–85.
50. Molecular Operating Environment. 2015.08 ed. 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada H3A 2R72017.
51. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, et al. AMBER 12. University of California, San Francisco2012.
52. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research. 2007;35(Web Server):W407–W10.
53. Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003;50(3):437–50. doi: 10.1002/prot.10286 12557186
54. Melo F, Feytmans E. Assessing protein structures with a non-local atomic interaction energy. Journal of Molecular Biology. 1998;277(5):1141–52.
55. Benkert P, Tosatto SCE, Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71(1):261–77.
56. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.
57. Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B Cell Epitope Predictions: Impacts of Method Development and Improved Benchmarking. PLoS Computational Biology. 2012;8(12):e1002829. doi: 10.1371/journal.pcbi.1002829 23300419
58. Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Science. 2006;15(11):2558–67. doi: 10.1110/ps.062405906 17001032
59. Ponomarenko J, Bui H-H, Li W, Fusseder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008;9(1):514.
60. Nishikawa K, Ooi T. Prediction of the surface-interior diagram of globular proteins by an empirical method. Int J Pept Protein Res. 1980;16(1):19–32.
61. Prescott SL, Taylor A, King B, Dunstan J, Upham JW, Thornton CA, et al. Neonatal interleukin-12 capacity is associated with variations in allergen-specific immune responses in the neonatal and postnatal periods. Clin Exp Allergy. 2003;33(5):566–72. doi: 10.1046/j.1365-2222.2003.01659.x 12752583
62. DeRose-Wilson LJ, Gaut BS. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata. BMC Evolutionary Biology. 2007;7(1):66.
63. Dillon MM, Sung W, Sebra R, Lynch M, Cooper VS. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri. Molecular Biology and Evolution. 2017;34(1):93–109.
64. Li W, Graur D. Fundamentals of molecular evolution. Sunderland, MA: Sinauer Associates; 1991. p. 15.
65. Latif S, Pfannstiel J, Makkar HP, Becker K. Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process. Food Chem. 2013;136(1):213–7. doi: 10.1016/j.foodchem.2012.07.120 23017415
66. Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker W-M, et al. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochemical Journal. 2006;395(3):463–72.
67. Ramos ML, Fleming G, Chu Y, Akiyama Y, Gallo M, Ozias-Akins P. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence. Mol Genet Genomics. 2006;275(6):578–92. doi: 10.1007/s00438-006-0114-z 16614814
68. Guindon S, Rodrigo AG, Dyer KA, Huelsenbeck JP. Modeling the site-specific variation of selection patterns along lineages. Proc Natl Acad Sci U S A. 2004;101(35):12957–62.
69. Lu A, Guindon S. Performance of standard and stochastic branch-site models for detecting positive selection among coding sequences. Mol Biol Evol. 2014;31(2):484–95.
70. Martins PL, Roseane CdS, Joo LdSF, Fbia SLP, Liziane MdL. Trypsin (serine protease) inhibitors in peanut genotypes aiming for control of stored grain pests. African Journal of Agricultural Research. 2014;9(30):2362–8.
71. Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, et al. Small Cysteine-Rich Antifungal Proteins from Radish: Their Role in Host Defense. The Plant Cell. 1995;7(5):573.
72. Agizzio AP, Da Cunha M, Carvalho AO, Oliveira MA, Ribeiro SFF, Gomes VM. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells. Plant Sci. 2006;171(4):515–22. doi: 10.1016/j.plantsci.2006.06.001 25193649
73. MacRaild CA, Zachrdla M, Andrew D, Krishnarjuna B, Novacek J, Zidek L, et al. Conformational dynamics and antigenicity in the disordered malaria antigen merozoite surface protein 2. PLoS One. 2015;10(3):e0119899. doi: 10.1371/journal.pone.0119899 25742002
74. Rubinstein ND, Mayrose I, Halperin D, Yekutieli D, Gershoni JM, Pupko T. Computational characterization of B-cell epitopes. Mol Immunol. 2008;45(12):3477–89. doi: 10.1016/j.molimm.2007.10.016 18023478
75. Otsu K, Guo R, Dreskin SC. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clinical & Experimental Allergy. 2015;45(2):471–84.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy