Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae)
Autoři:
Vladimir E. Gokhman aff001; Marcelo de Bello Cioffi aff002; Christian König aff004; Marie Pollmann aff004; Cornelia Gantert aff004; Lars Krogmann aff004; Johannes L. M. Steidle aff004; Nadezda Kosyakova aff003; Thomas Liehr aff003; Ahmed Al-Rikabi aff003
Působiště autorů:
Botanical Garden, Moscow State University, Moscow, Russia
aff001; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
aff002; Institute of Human Genetics, Jena University Hospital, Jena, Germany
aff003; Institute for Zoology, University of Hohenheim, Stuttgart, Germany
aff004; Department of Entomology, State Museum of Natural History Stuttgart, Stuttgart, Germany
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225257
Souhrn
Karyotypes of two cryptic species of parasitoid Hymenoptera with n = 5 and 6 belonging to the Lariophagus distinguendus (Förster, 1841) complex, which includes cosmopolitan parasitoids of coleopteran stored-product pests, were studied using glass-needle based microdissection, reverse and cross-species fluorescence in situ hybridisation (FISH). This experiment strongly indicates that the largest metacentric chromosome in the karyotype with n = 5 originated from a particular fusion between the only acrocentric and a smaller metacentric chromosome of the set with n = 6, therefore confirming our previous hypothesis based on the karyotypic analysis using chromosome morphometrics. This study represents the first successful application of both microdissection and whole chromosome painting for the reconstruction of karyotypic rearrangements in closely related species of parasitoids, as well as in the order Hymenoptera in general.
Klíčová slova:
Cryptic speciation – Fluorescent in situ hybridization – Hymenoptera – Chromosome pairs – In situ hybridization – Karyotypes – Morphometry – Polymerase chain reaction
Zdroje
1. Quicke DLJ. Parasitic wasps. London: Chapman & Hall; 1997.
2. Huber JT. Biodiversity of Hymenoptera. In: Foottit RG, Adler PH, editors. Insect biodiversity: Science and society. 2nd ed. Wiley Blackwell; 2017. pp. 419–461.
3. Gokhman VE, Anokhin BA, Kuznetsova VG. Distribution of 18S rDNA sites and absence of the canonical TTAGG insect telomeric repeat in parasitoid Hymenoptera. Genetica 2014; 142: 317–322. doi: 10.1007/s10709-014-9776-3 24992984
4. Gokhman VE. Karyotypes of parasitic Hymenoptera. Springer; 2009.
5. Gokhman VE, Kuhn KL, Woolley JB, Hopper KR. Variation in genome size and karyotype among closely related aphid parasitoids (Hymenoptera, Aphelinidae). Comp Cytogenet. 2017; 11: 97–117. doi: 10.3897/CompCytogen.v11i1.10872 28919952
6. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet. 2005; 6: 782–792. doi: 10.1038/nrg1692 16145555
7. Zhou R-N, Hu Z-M. The development of chromosome microdissection and microcloning technique and its applications in genomic research. Curr Genom. 2007; 8: 67–72.
8. Vicari MR, Pansonato-Alves JC, Foresti F. Microdissection and chromosome painting. In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti de Almeida Toledo L, editors. Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans. CRC Press; 2015. pp. 144–165.
9. Ferguson-Smith MA, Trifonov V. Mammalian karyotype evolution. Nat Rev Genet. 2007; 8: 950–962. doi: 10.1038/nrg2199 18007651
10. Yang F, Graphodatsky AS. Animal probes and ZOO-FISH. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) application guide. 2nd ed. Springer; 2017. pp. 395–415.
11. Protocols for cytogenetic mapping of arthropod genomes. Sharakhov IV, editor. CRC Press; 2015.
12. Teruel M, Cabrero J, Montiel EE, Acosta MJ, Sánchez A, Camacho JPM. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria. Chromosome Res. 2009; 17: 11–18. doi: 10.1007/s10577-008-9001-2 19105034
13. Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA 2013; 110: 6931–6936. doi: 10.1073/pnas.1220372110 23569222
14. Zrzavá M, Hladová I, Dalíková M, Šíchová J, Õunap E, Kubíčková S, et al. Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata. Genes 2018; 9: 279.
15. Fernandes A, Scudeler PES, Diniz D, Foresti F, Campos LAO, Lopes DM. Microdissection: a tool for bee chromosome studies. Apidologie 2011; 42: 743–748.
16. Martins CCC, Diniz D, Sobrinho-Scudeler PE, Foresti F, Campos LAO, Costa MA. Investigation of Partamona helleri (Apidae, Meliponini) B chromosome origin. An approach by microdissection and whole chromosome painting. Apidologie 2013; 44: 75–81.
17. Lopes DM, Fernandes A, Diniz D, Scudeler PES, Foresti F, Campos LAO. Similarity of heterochromatic regions in the stingless bees (Hymenoptera: Meliponini) revealed by chromosome painting. Caryologia 2014; 67: 222–226.
18. Tavares MG, Lopes DM, Campos LAO. An overview of cytogenetics of the tribe Meliponini (Hymenoptera: Apidae). Genetica 2017; 145: 241–258. doi: 10.1007/s10709-017-9961-2 28315980
19. Rütten KB, Pietsch C, Olek K, Neusser M, Beukeboom LW, Gadau J. Chromosomal anchoring of linkage groups and identification of wing size QTL using markers and FISH probes derived from microdissected chromosomes in Nasonia (Pteromalidae: Hymenoptera). Cytogenet Genome Res. 2004; 105: 126–133. doi: 10.1159/000078019 15218268
20. Gadau J, Rütten K, Neusser M. Parasitoid wasps (Hymenoptera). In: Sharakhov IV, edtor. Protocols for cytogenetic mapping of arthropod genomes. CRC Press; 2015. pp. 257–284.
21. Niedermayer S, Pollmann M, Steidle JLM. Lariophagus distinguendus (Hymenoptera: Pteromalidae) (Förster)–past, present, and future: The history of a biological control method using L. distinguendus against different storage pests. Insects 2016; 7: 39.
22. Noyes JS. Universal Chalcidoidea Database. World Wide Web electronic publication; 2019 [cited 2019 Aug 29]. Available from: http://www.nhm.ac.uk/chalcidoids
23. König K, Krimmer E, Brose S, Gantert C, Buschlüter I, König C, et al. Does early learning drive ecological divergence during speciation processes in parasitoid wasps? Proc R Soc B 2015; 282: 20141850. doi: 10.1098/rspb.2014.1850 25621331
24. König K, Zundel P, Krimmer E, König C, Pollmann M, Gottlieb Y, et al. Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps. Ecol Evol. 2019; 9: 10694–10706. doi: 10.1002/ece3.5588 31632650
25. König C, Paschke S, Pollmann M, Reinisch R, Gantert C, Weber J, et al. Molecular and cytogenetic differentiation within the Lariophagus distinguendus (Förster, 1841) species complex (Hymenoptera, Pteromalidae). Comp Cytogenet. 2019; 13: 133–145. doi: 10.3897/CompCytogen.v13i2.34492 31240090
26. Graham MWR de V. The Pteromalidae of north-western Europe (Hymenoptera: Chalcidoidea). Bull Br Mus (Nat Hist) (Entomol). 1969; Suppl 16: 1–908,
27. Imai HT, Taylor RW, Crosland MWJ, Crozier RH. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet. 1988; 63: 159–185. doi: 10.1266/jjg.63.159 3273765
28. Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP. Generation of paint probes from flow-sorted and microdissected chromosomes. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) application guide. 2nd ed. Springer; 2017. pp. 63–79.
29. Yano CF, Bertollo LAC, Cioffi MB. Fish-FISH: Molecular cytogenetics in fish species. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) application guide. 2nd ed. Springer; 2017. pp. 429–443.
30. Trifonov VA, Vorobieva NV, Serdyukova NA, Rens W. FISH with and without COT1 DNA. In: Liehr T, editor. Fluorescence in situ hybridization (FISH) application guide. 2nd ed. Springer; 2017. pp. 123–133.
31. Zwick MS, Hanson RE, Islam-Faridi MN. A rapid procedure for the isolation of C0t-1 DNA from plants. Genome 1997; 40: 138–142. doi: 10.1139/g97-020 18464813
32. Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas 1964; 52: 201–220.
33. Odierna G, Baldanza F, Aprea G, Olmo E. Occurrence of G-banding in metaphase chromosomes of Encarsia berlesei (Hymenoptera: Aphelinidae). Genome 1993; 36: 662–667. doi: 10.1139/g93-088 18470016
34. Baldanza F., Gaudio L, Viggiani G. Cytotaxonomic studies of Encarsia Förster (Hymenoptera: Aphelinidae). Bull Entomol Res. 1999; 89: 209–215.
35. Rodionov AV. Evolution of the chromosomal banding pattern. Russ J Genet. 1999; 35: 215–227.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy