Diversity, distribution and dynamics of large trees across an old-growth lowland tropical rain forest landscape
Autoři:
David B. Clark aff001; Antonio Ferraz aff002; Deborah A. Clark aff001; James R. Kellner aff003; Susan G. Letcher aff005; Sassan Saatchi aff002
Působiště autorů:
Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
aff001; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
aff002; Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, United States of America
aff003; Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
aff004; Plant Biology, College of the Atlantic, Bar Harbor, Maine, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224896
Souhrn
Large trees, here defined as ≥60 cm trunk diameter, are the most massive organisms in tropical rain forest, and are important in forest structure, dynamics and carbon cycling. The status of large trees in tropical forest is unclear, with both increasing and decreasing trends reported. We sampled across an old-growth tropical rain forest landscape at the La Selva Biological Station in Costa Rica to study the distribution and performance of large trees and their contribution to forest structure and dynamics. We censused all large trees in 238 0.50 ha plots, and also identified and measured all stems ≥10 cm diameter in 18 0.50 ha plots annually for 20 years (1997–2017). We assessed abundance, species diversity, and crown conditions of large trees in relation to soil type and topography, measured the contribution of large trees to stand structure, productivity, and dynamics, and analyzed the decadal population trends of large trees. Large trees accounted for 2.5% of stems and ~25% of mean basal area and Estimated Above-Ground Biomass, and produced ~10% of the estimated wood production. Crown exposure increased with stem diameter but predictability was low. Large tree density was about twice as high on more-fertile flat sites compared to less fertile sites on slopes and plateaus. Density of large trees increased 27% over the study interval, but the increase was restricted to the flat more-fertile sites. Mortality and recruitment differed between large trees and smaller stems, and strongly suggested that large tree density was affected by past climatic disturbances such as large El Niño events. Our results generally do not support the hypothesis of increasing biomass and turnover rates in tropical forest. We suggest that additional landscape-scale studies of large trees are needed to determine the generality of disturbance legacies in tropical forest study sites.
Klíčová slova:
Census – Death rates – Fabaceae – Forests – Rainforests – Trees – Tropical forests – Dendrology
Zdroje
1. Sist P, Mazzei L, Blanc L, Rutishauser E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For Ecol Manage. 2014;318:103–109.
2. Bastin J-F, Rutishauser E, Kellner JR, Saatchi S, Pélissier R, Hérault B, et al. Pan-tropical prediction of forest structure from the largest trees. Glob Ecol Biogeogr. 2018;27:1366–1383.
3. Lutz JA, Furniss TJ, Johnson DJ, et al. Global importance of large‐diameter trees. Global Ecol Biogeogr. 2018;27:849–864.
4. Bradford M, Murphy HT. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS One. 2019;https://doi.org/10.1371/journal.pone.0208377.
5. Laurance WF, Delamonica P, Laurance SG, Vasconcelos HL, Lovejoy TE. Rainforest fragmentation kills big trees. Nature. 2000;404:836. doi: 10.1038/35009032 10786782
6. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology. 2007;88:2259–2269. doi: 10.1890/06-1046.1 17918404
7. Phillips OL, van der Heijden G, Lewis SL, Lopez-Gonzalez G, Aragao LEOC, LLoyd J, et al. Drought-mortality relationships for tropical forests. New Phytol. 2010;187:631–646. doi: 10.1111/j.1469-8137.2010.03359.x 20659252
8. Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ. Larger trees suffer most during drought in forests worldwide. Nat Plants. 2015;1:15139. doi: 10.1038/nplants.2015.139 27251391
9. Phillips OL, Aragao LEOC, Lewis SL, Fisher JB, LLoyd J, López-González G, et al. Drought sensitivity of the Amazon rainforest. Science. 2009;323:1344–1347. doi: 10.1126/science.1164033 19265020
10. Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, et al. Slik et al. 2013 Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics Glob Ecol Biogeogr. 2013;22:1261–1271.
11. Bastin JF, Barbier N, Réjou-Méchain M, Fayolle A, Gourlet-Fleury S, et al. Seeing Central African forests through their largest trees Sci Rep. 2015; 5:13156. doi: 10.1038/srep13156 26279193
12. Ferraz A, Saatchi S, Mallet C, Meyer V. Lidar detection of individual tree size in tropical forests. Remote Sens Environ. 2016;183:318–333.
13. Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. Amazonian rainforest tree mortality driven by climate and functional traits. Nat Clim Chang. 2019;9:384–388.
14. Meyer V, Saatchi S, Clark DB, Keller M, Vincent G, Ferraz A. et al. Canopy area of large trees explains aboveground biomass variations across nine neotropical forest landscapes, Biogeosciences. 2018;15:3377–3390.
15. Kellner JR, Hubbell SP. Density-dependent adult recruitment in a low-density tropical tree. Proc Natl Acad Sci U S A. 2018; https://doi.org/10.1073/pnas.1800353115
16. Clark DB, Clark DA, Oberbauer SF, Kellner JR. Multidecadal stability in tropical rain forest structure and dynamics across an old-growth landscape. PLoS One. 2017; https://doi.org/10.1371/journal.pone.0183819.
17. McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 2018;219: 851–869. doi: 10.1111/nph.15027 29451313
18. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lopez-Gonzalez G et al. Long-term decline of the Amazon carbon sink. Nature. 2015; 519:344–348. doi: 10.1038/nature14283 25788097
19. Meakem V, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Muller-Landau HC, Wright SJ, Hubbell SP et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses New Phytol. 2017; https://doi.org/10.1111/nph.14633
20. Lindenmayer DB, Laurance WF, Franklin JF. Global decline in large old trees. Science. 2012;338:1305–1306. doi: 10.1126/science.1231070 23224548
21. Lindenmayer DB, Laurance WF. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 2016;https://doi.org/10.1111/brv.12290
22. Pennisi E. Forest giants are the trees most at risk. Science. 2019;365:962–963. doi: 10.1126/science.365.6457.962 31488667
23. Losos EC, Leigh EG, eds. Tropical forest diversity and dynamism. Chicago: The University of Chicago Press; 2004.
24. Hubbell SP. Tropical rain forest conservation and the twin challenges of diversity and rarity. Ecol Evol. 2013;3:3263–3274. doi: 10.1002/ece3.705 24223266
25. Clark DA, Clark DB. Life history diversity of canopy and emergent trees in a neotropical rainforest. Ecol Monogr. 1992;62:315–344.
26. Kellner JR, Hubbell SP. Adult mortality in a low-density tree population using high-resolution remote sensing. Ecology. 2017; 98:1700–1709. doi: 10.1002/ecy.1847 28376234
27. Thomas RQ, Kellner JR, Clark DB, Peart DR. Low mortality in tall tropical trees. Ecology. 2013;94:920–929.
28. Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, et al. Rate of tree carbon accumulation increases continuously with tree size. Nature. 2014;507:90–93. doi: 10.1038/nature12914 24429523
29. Sheil D, Eastaugh CS, Vlam M, Zuidema PA, Groenendijk P, van der Sleen P, et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Func Ecol. 2017;31:578–581.
30. Balzotti CS, Asner GP, Taylor PG, Cole R, Osborne BB, Cleveland CC, et al. Topographic distributions of emergent trees in tropical forests of the Osa Peninsula, Costa Rica. Ecography. 2017;40:829–839.
31. Clark DB, Read JM, Clark ML, Murillo Cruz A, Fallas Dotti M, Clark DA. Application of 1-m and 4-m resolution satellite data to ecological studies of tropical rain forests. Ecol Appl. 2004;14:61–74.
32. Sollins P, Sancho M. F, Mata Ch. R, Sanford RL Jr. Soils and soil process research. In: McDade LA, Bawa KS, Hespenheide H, Hartshorn GS, editors. La Selva: ecology and natural history of a Neotropical rainforest. Chicago: University of Chicago Press; 1994. pp. 34–53.
33. Clark DB, Clark DA, Read JM. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol. 1998;86:101–112.
34. Kellner JR, Clark DB, Hofton MA. Canopy height and ground elevation in a mixed land use lowland Neotropical rain forest landscape. Ecology. 2009;90:3274.
35. Brown S, Lugo AE. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia. 1992;17:8–18.
36. Clark DB, Clark DA. Abundance, growth and mortality of very large trees in neotropical lowland rain forest. For Ecol Manage. 1996;80:235–244.
37. Murphy HT, Bradford MG, Dalongeville A, Ford AJ, Metcalfe DJ. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia J Ecol. 2013; 101:1589–1597.
38. Hartshorn GS, Peralta R. Preliminary description of primary forests along the La Selva-Volcan Barba altitudinal transect, Costa Rica. In: Almeda F, Pringle C, editors. Tropical rainforests: diversity and conservation. San Francisco: California Academy of Science; 1988. pp. 281–295.
39. Clark DB. Abolishing virginity. J Trop Ecol. 1996;12:735–739.
40. Brown S. Estimating biomass and biomass change of tropical forests: A primer. Rome: FAO Forestry Paper 134; 1997.
41. Clark DA, Clark DB, Oberbauer SF. Field-quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009. J Geophys Res Biogeosci. 2013;118:1–12.
42. Vitousek PM, Denslow JS. Differences in extractable phosphorus among soils of the La Selva Biological Station, Costa Rica. Biotropica. 1987;19:167–170.
43. Espeletia JF, Clark DA. Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecol Monogr. 2007; 77: 377–404.
44. Porder S, Clark DA, Vitousek PM. Persistence of rock‐derived nutrients in the wet tropical forests of La Selva, Costa Rica. Ecology. 2006;87:594–602 doi: 10.1890/05-0394 16602289
45. Clark DA, Clark DB, Sandoval M. R, Castro C. MV. Edaphic and human effects on landscape-scale distributions of tropical rain forest palms. Ecology. 1995;76:2581–2594.
46. Clark DB, Palmer MW, Clark DA. Edaphic factors and the landscape-scale distribution of tropical rain forest trees. Ecology. 1999;80:2662–2675.
47. Soininen, A. TerraScan User’s guide. 2011 http://www.terrasolid.com/guides/tscan/index.html.
48. Sheil D, May RM. Mortality and recruitment rate evaluations in heterogeneous tropical forests. J Ecol. 1996;84:91–100.
49. Zar JH. Biostatistical Analysis: Third Edition. Upper Saddle River, New Jersey: Prentice Hall; 1996.
50. Gomes EPC, Mantovani W, Kageyama PY. Mortality and recruitment of trees in a secondary montane rain forest in southeastern Brazil. Braz J Biol. 2003;63:47–60. doi: 10.1590/s1519-69842003000100007 12914414
51. Bunker DE, DeClerck F, Bradford JC, Colwell RK, Perfecto I, Phillips OL, et al. Species loss and aboveground carbon storage in a tropical forest. Science. 2005;310:1029–1031. doi: 10.1126/science.1117682 16239439
52. Phillips OL, Sullivan MJP, Baker TR, Monteagudo Mendoza A, Núñez Vargas P, Vásquez R. Species matter: wood density Influences tropical forest biomass at multiple scales. Surv Geophys. 2019;40:913–935. doi: 10.1007/s10712-019-09540-0 31395992
53. Silva CE, Kellner JR, Clark DB, Clark DA. Response of an old-growth tropical rain forest to transient high temperature and drought. Glob Chang Biol. 2013:19:3423–3434. doi: 10.1111/gcb.12312 23824759
54. Chambers JQ, Negron-Juarez RI, Magnabosco Marra D, Di Vittorioa A, Tews J, Roberts Dar et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc Natl Acad Sci U S A. 2013;110:3949–3954. https://doi.org/10.1073/pnas.1202894110 doi: 10.1073/pnas.1202894110 23359707
55. Fichtler E, Clark DA, Worbes M. Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica. 2003;35:306–317.
56. Phillips OL, Lewis SL, Higuchi N, Baker T. Recent changes in Amazon forest biomass and dynamics. In: Nagy L, Forsberg BR, Artaxo P. Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin, Ecological Studies 227. Berlin; Springer-Verlag; 2016. pp. 191–224.
57. Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF. Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Syst. 2009;40:529–549.
58. National Oceanic and Atmospheric Administration (NOAA). Washington D.C. [cited 2 July 2018]. Physical Sciences Division. [1 screen]. https://www.esrl.noaa.gov/psd/enso/climaterisks/years/top24enso.html
59. Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457:1003–1007. doi: 10.1038/nature07771 19225523
60. Yang Y, Saatchi SS, Xu L, Yu Y, Choi S, Phillips N, et al. Post-drought decline of the Amazon carbon sink. Nat Commun. 2018;9:3172. doi: 10.1038/s41467-018-05668-6 30093640
61. Magnabosco Marra D, Trumbore SE, Higuchi N, Ribeiro GHPM, Negrón-Juárez RI, Holzwarth F, et al. Windthrows control biomass patterns and functional composition of Amazon forests. Glob Chang Biol. 2018;24:5867–5881. doi: 10.1111/gcb.14457 30256494
62. Rutishauser E, Wagner F, Herault B, Nicolini E-A, Blanc L. Contrasting above-ground biomass balance in a Neotropical rain forest. J Veg Sci. 2010;21:672–682.
63. Ploton P, Barbiera N, Couterona P, Antina CM, Ayyappanc N., Balachandranc N, et al. Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sens Environ. 2017; 200:140–153. http://dx.doi.org/10.1016/j.rse.2017.08.001
64. Clark DB, Soto Castro C, Alfaro Alvarado LD, Read JM. Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecol Lett. 2004;7:52–59.
65. Dubayah RO, Sheldon SL, Clark DB, Hofton MA, Blair JB, Hurtt GC, et al. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J Geophys Res. 2010; https://doi.org/10.1029/2009JG000933
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy