Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages
Autoři:
Samuel C. Mandacaru aff001; Rayner M. L. Queiroz aff001; Marcos R. Alborghetti aff001; Lucas S. de Oliveira aff001; Consuelo M. R. de Lima aff001; Izabela M. D. Bastos aff003; Jaime M. Santana aff003; Peter Roepstorff aff002; Carlos André O. Ricart aff001; Sébastien Charneau aff001
Působiště autorů:
Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
aff001; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
aff002; Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225386
Souhrn
Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.
Klíčová slova:
Cytoskeletal proteins – Host cells – Membrane proteins – Motor proteins – Mucin – Parasitic diseases – Trypanosoma cruzi – Trypomastigotes
Zdroje
1. WHO (2010) First WHO report on neglected tropical diseases.
2. Albajar-Vinas P, Jannin J (2011) The hidden Chagas disease burden in Europe. Euro Surveill 16.
3. Rassi A Jr., Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375: 1388–1402. doi: 10.1016/S0140-6736(10)60061-X 20399979
4. Roca C, Pinazo MJ, Lopez-Chejade P, Bayo J, Posada E, López-Solana J, et al. (2011) Chagas disease among the Latin American adult population attending in a primary care center in Barcelona, Spain. PLoS Negl Trop Dis 5: e1135. doi: 10.1371/journal.pntd.0001135 21572511
5. Coura JR, Vinas PA (2010) Chagas disease: a new worldwide challenge. Nature 465: S6–7. doi: 10.1038/nature09221 20571554
6. Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49: e52–54. doi: 10.1086/605091 19640226
7. Basso B (2013) Modulation of immune response in experimental Chagas disease. World J Exp Med 3: 1–10. doi: 10.5493/wjem.v3.i1.1 24520540
8. Cardillo F, de Pinho RT, Antas PR, Mengel J (2015) Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 73: ftv082. doi: 10.1093/femspd/ftv082 26438729
9. Hasslocher-Moreno AM, do Brasil PE, de Sousa AS, Xavier SS, Chambela MC, Sperandio da Silva GM (2012) Safety of benznidazole use in the treatment of chronic Chagas' disease. J Antimicrob Chemother 67: 1261–1266. doi: 10.1093/jac/dks027 22331592
10. Bern C (2011) Antitrypanosomal therapy for chronic Chagas' disease. N Engl J Med 364: 2527–2534. doi: 10.1056/NEJMct1014204 21714649
11. Burleigh BA, Andrews NW (1995) The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu Rev Microbiol 49: 175–200. doi: 10.1146/annurev.mi.49.100195.001135 8561458
12. Rubin-de-Celis SS, Uemura H, Yoshida N, Schenkman S (2006) Expression of trypomastigote trans-sialidase in metacyclic forms of Trypanosoma cruzi increases parasite escape from its parasitophorous vacuole. Cell Microbiol 8: 1888–1898. doi: 10.1111/j.1462-5822.2006.00755.x 16824037
13. Andrews NW (1993) Living dangerously: how Trypanosoma cruzi uses lysosomes to get inside host cells, and then escapes into the cytoplasm. Biol Res 26: 65–67. 7670547
14. Camargo R, Faria LO, Kloss A, Favali CB, Kuckelkorn U, Kloetzel PM, et al. (2014) Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 9: e95977. doi: 10.1371/journal.pone.0095977 24752321
15. Caccia D, Dugo M, Callari M, Bongarzone I (2013) Bioinformatics tools for secretome analysis. Biochim Biophys Acta 1834: 2442–2453. doi: 10.1016/j.bbapap.2013.01.039 23395702
16. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. (2007) Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A 104: 19428–19433. doi: 10.1073/pnas.0709013104 18040051
17. Skalnikova H, Motlik J, Gadher SJ, Kovarova H (2011) Mapping of the secretome of primary isolates of mammalian cells, stem cells and derived cell lines. Proteomics 11: 691–708. doi: 10.1002/pmic.201000402 21241017
18. Pavlou MP, Diamandis EP (2010) The cancer cell secretome: a good source for discovering biomarkers? J Proteomics 73: 1896–1906. doi: 10.1016/j.jprot.2010.04.003 20394844
19. Affranchino JL, Ibanez CF, Luquetti AO, Rassi A, Reyes MB, Macina RA, et al. (1989) Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Mol Biochem Parasitol 34: 221–228. doi: 10.1016/0166-6851(89)90050-9 2499788
20. Buschiazzo A, Muia R, Larrieux N, Pitcovsky T, Mucci J, Campetella O (2012) Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structure/function studies towards the rational design of inhibitors. PLoS Pathog 8: e1002474. doi: 10.1371/journal.ppat.1002474 22241998
21. Raimondo F, Morosi L, Chinello C, Magni F, Pitto M (2011) Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics 11: 709–720. doi: 10.1002/pmic.201000422 21241021
22. Buscaglia CA, Campo VA, Frasch AC, Di Noia JM (2006) Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4: 229–236. doi: 10.1038/nrmicro1351 16489349
23. Queiroz RM, Charneau S, Mandacaru SC, Schwammle V, Lima BD, Roepstorff P, et al. (2014) Quantitative proteomic and phosphoproteomic analysis of Trypanosoma cruzi amastigogenesis. Mol Cell Proteomics 13: 3457–3472. doi: 10.1074/mcp.M114.040329 25225356
24. Ld Silva (1953) Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Fol Clin Biol 20: 191–207.
25. Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29: 264–269. doi: 10.1111/j.1550-7408.1982.tb04024.x 7047731
26. Queiroz RM, Ricart CA, Machado MO, Bastos IM, de Santana JM, de Sousa MV, et al. (2016) Insight into the Exoproteome of the Tissue-Derived Trypomastigote form of Trypanosoma cruzi. Front Chem 4: 42. doi: 10.3389/fchem.2016.00042 27872839
27. Tomlinson S, Vandekerckhove F, Frevert U, Nussenzweig V (1995) The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology 110 (Pt 5): 547–554.
28. Gobom J, Nordhoff E, Mirgorodskaya E, Ekman R, Roepstorff P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34: 105–116. doi: 10.1002/(SICI)1096-9888(199902)34:2<105::AID-JMS768>3.0.CO;2-4 10093212
29. Queiroz RM, Charneau S, Bastos IM, Santana JM, Sousa MV, Roepstorff P, et al. (2014) Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages. J Proteome Res 13: 3530–3541. doi: 10.1021/pr401120y 24978697
30. Hernandez-Osorio LA, Marquez-Duenas C, Florencio-Martinez LE, Ballesteros-Rodea G, Martinez-Calvillo S, Manning-Cela RG (2010) Improved method for in vitro secondary amastigogenesis of Trypanosoma cruzi: morphometrical and molecular analysis of intermediate developmental forms. J Biomed Biotechnol 2010: 283842. doi: 10.1155/2010/283842 20037731
31. Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA (2013) Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 13: 108–117. doi: 10.1016/j.chom.2012.11.011 23332160
32. Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, Cordero EM, Marques AF, Varela-Ramirez A, et al. (2012) Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res.
33. Freire-de-Lima L, da Fonseca LM, da Silva VA, da Costa KM, Morrot A, Freire-de-Lima CG, et al. (2016) Modulation of Cell Sialoglycophenotype: A Stylish Mechanism Adopted by Trypanosoma cruzi to Ensure Its Persistence in the Infected Host. Front Microbiol 7: 698. doi: 10.3389/fmicb.2016.00698 27242722
34. Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI (2012) Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol 188: 1942–1952. doi: 10.4049/jimmunol.1102053 22262654
35. Cuervo P, De Jesus JB, Saboia-Vahia L, Mendonca-Lima L, Domont GB, Cupolillo E (2009) Proteomic characterization of the released/secreted proteins of Leishmania (Viannia) braziliensis promastigotes. J Proteomics 73: 79–92. doi: 10.1016/j.jprot.2009.08.006 19703603
36. Grebaut P, Chuchana P, Brizard JP, Demettre E, Seveno M, Bossard G, et al. (2009) Identification of total and differentially expressed excreted-secreted proteins from Trypanosoma congolense strains exhibiting different virulence and pathogenicity. Int J Parasitol 39: 1137–1150. doi: 10.1016/j.ijpara.2009.02.018 19285981
37. Geiger A, Hirtz C, Becue T, Bellard E, Centeno D, Gargani D, et al. (2010) Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 10: 20. doi: 10.1186/1471-2180-10-20 20102621
38. Dc-Rubin SS, Schenkman S (2012) Trypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas' disease. Cell Microbiol 14: 1522–1530. doi: 10.1111/j.1462-5822.2012.01831.x 22747789
39. Freire-de-Lima L, Oliveira IA, Neves JL, Penha LL, Alisson-Silva F, Dias WB, et al. (2012) Sialic acid: a sweet swing between mammalian host and Trypanosoma cruzi. Front Immunol 3: 356. doi: 10.3389/fimmu.2012.00356 23230438
40. Atwood JA, 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, et al. (2005) The Trypanosoma cruzi proteome. Science 309: 473–476. doi: 10.1126/science.1110289 16020736
41. Belaunzaran ML, Wilkowsky SE, Lammel EM, Gimenez G, Bott E, Barbieri MA, et al. (2013) Phospholipase A1: a novel virulence factor in Trypanosoma cruzi. Mol Biochem Parasitol 187: 77–86. doi: 10.1016/j.molbiopara.2012.12.004 23275096
42. de Paulo Martins V, Okura M, Maric D, Engman DM, Vieira M, Docampo R, et al. (2010) Acylation-dependent export of Trypanosoma cruzi phosphoinositide-specific phospholipase C to the outer surface of amastigotes. J Biol Chem 285: 30906–30917. doi: 10.1074/jbc.M110.142190 20647312
43. Lippestad M, Hodges RR, Utheim TP, Serhan CN, Dartt DA (2018) Signaling pathways activated by resolvin E1 to stimulate mucin secretion and increase intracellular Ca(2+) in cultured rat conjunctival goblet cells. Exp Eye Res 173: 64–72. doi: 10.1016/j.exer.2018.04.015 29702100
44. Bartholomeu DC, Cerqueira GC, Leao AC, daRocha WD, Pais FS, Macedo C, et al. (2009) Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi. Nucleic Acids Res 37: 3407–3417. doi: 10.1093/nar/gkp172 19336417
45. dos Santos SL, Freitas LM, Lobo FP, Rodrigues-Luiz GF, Mendes TA, Oliveira AC, et al. (2012) The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection. PLoS Negl Trop Dis 6: e1779. doi: 10.1371/journal.pntd.0001779 22905275
46. Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, et al. (2016) Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLoS Pathog 12: e1005511. doi: 10.1371/journal.ppat.1005511 27046031
47. Vanags D, Williams B, Johnson B, Hall S, Nash P, Taylor A, et al. (2006) Therapeutic efficacy and safety of chaperonin 10 in patients with rheumatoid arthritis: a double-blind randomised trial. Lancet 368: 855–863. doi: 10.1016/S0140-6736(06)69210-6 16950363
48. Johnson BJ, Le TT, Dobbin CA, Banovic T, Howard CB, Flores Fde M, et al. (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J Biol Chem 280: 4037–4047. doi: 10.1074/jbc.M411569200 15546885
49. Shamaei-Tousi A, D'Aiuto F, Nibali L, Steptoe A, Coates AR, Parkar M, et al. (2007) Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PloS one 2: e1198. doi: 10.1371/journal.pone.0001198 18030332
50. Henderson B, Henderson S (2009) Unfolding the relationship between secreted molecular chaperones and macrophage activation states. Cell Stress and Chaperones 14: 329–341. doi: 10.1007/s12192-008-0087-4 18958583
51. Aliberti J, Valenzuela JG, Carruthers VB, Hieny S, Andersen J, Charest H, et al. (2003) Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nature immunology 4: 485. doi: 10.1038/ni915 12665855
52. Babaahmady K, Oehlmann W, Singh M, Lehner T (2007) Inhibition of human immunodeficiency virus type 1 infection of human CD4+ T cells by microbial HSP70 and the peptide epitope 407–426. J Virol 81: 3354–3360. doi: 10.1128/JVI.02320-06 17251296
53. Wilson MR, Easterbrook-Smith SB (2000) Clusterin is a secreted mammalian chaperone. Trends in biochemical sciences 25: 95–98. doi: 10.1016/s0968-0004(99)01534-0 10694874
54. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, et al. (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93: 863–873. doi: 10.1016/s0092-8674(00)81446-4 9630229
55. Alvarez VE, Niemirowicz GT, Cazzulo JJ (2012) The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta 1824: 195–206. doi: 10.1016/j.bbapap.2011.05.011 21621652
56. Branquinha MH, Marinho FA, Sangenito LS, Oliveira SS, Goncalves KC, Ennes-Vidal V, et al. (2013) Calpains: potential targets for alternative chemotherapeutic intervention against human pathogenic trypanosomatids. Curr Med Chem 20: 3174–3185. doi: 10.2174/0929867311320250010 23899207
57. Bastos IM, Motta FN, Grellier P, Santana JM (2013) Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 20: 3103–3115. doi: 10.2174/0929867311320250006 23514419
58. Kulkarni MM, Olson CL, Engman DM, McGwire BS (2009) Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 77: 2193–2200. doi: 10.1128/IAI.01542-08 19273559
59. Pech-Canul AC, Monteon V, Solis-Oviedo RL (2017) A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017: 3751403. doi: 10.1155/2017/3751403 28656101
60. Ma L, Chen K, Meng Q, Liu Q, Tang P, Hu S, et al. (2011) An evolutionary analysis of trypanosomatid GP63 proteases. Parasitol Res 109: 1075–1084. doi: 10.1007/s00436-011-2348-x 21503641
61. Bernabo G, Levy G, Ziliani M, Caeiro LD, Sanchez DO, Tekiel V (2013) TcTASV-C, a protein family in Trypanosoma cruzi that is predominantly trypomastigote-stage specific and secreted to the medium. PLoS One 8: e71192. doi: 10.1371/journal.pone.0071192 23923058
62. Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infection and immunity 78: 22–31. doi: 10.1128/IAI.00776-09 19858295
63. Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT (2012) Leishmania virulence factors: focus on the metalloprotease GP63. Microbes and infection 14: 1377–1389. doi: 10.1016/j.micinf.2012.05.014 22683718
64. d’Avila-Levy CM, Altoé EC, Uehara LA, Branquinha MH, Santos AL (2014) GP63 function in the interaction of trypanosomatids with the invertebrate host: facts and prospects. Proteins and Proteomics of Leishmania and Trypanosoma: Springer. pp. 253–270.
65. Ersfeld K, Barraclough H, Gull K (2005) Evolutionary relationships and protein domain architecture in an expanded calpain superfamily in kinetoplastid parasites. J Mol Evol 61: 742–757. doi: 10.1007/s00239-004-0272-8 16315106
66. Caminha MA, de Lorena VMB, de Oliveira Junior W, Perales J, Carvalho PC, Lima DB, et al. (2019) Trypanosoma cruzi immunoproteome: Calpain-like CAP5.5 differentially detected throughout distinct stages of human Chagas disease cardiomyopathy. J Proteomics 194: 179–190. doi: 10.1016/j.jprot.2018.11.019 30503829
67. Munoz C, San Francisco J, Gutierrez B, Gonzalez J (2015) Role of the Ubiquitin-Proteasome Systems in the Biology and Virulence of Protozoan Parasites. Biomed Res Int 2015: 141526. doi: 10.1155/2015/141526 26090380
68. Hu H, Sun SC (2016) Ubiquitin signaling in immune responses. Cell Res 26: 457–483. doi: 10.1038/cr.2016.40 27012466
69. Hashimoto M, Murata E, Aoki T (2010) Secretory protein with RING finger domain (SPRING) specific to Trypanosoma cruzi is directed, as a ubiquitin ligase related protein, to the nucleus of host cells. Cell Microbiol 12: 19–30. doi: 10.1111/j.1462-5822.2009.01375.x 19702650
70. Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK, Smith EF, et al. (2013) A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 23: 2463–2471. doi: 10.1016/j.cub.2013.10.044 24316207
71. Kurup SP, Tarleton RL (2014) The Trypanosoma cruzi flagellum is discarded via asymmetric cell division following invasion and provides early targets for protective CD8(+) T cells. Cell Host Microbe 16: 439–449. doi: 10.1016/j.chom.2014.09.003 25299330
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy