Genotype-matched Newcastle disease virus vaccine confers improved protection against genotype XII challenge: The importance of cytoplasmic tails in viral replication and vaccine design
Autoři:
Ray Izquierdo-Lara aff001; Ana Chumbe aff001; Katherine Calderón aff001; Manolo Fernández-Díaz aff001; Vikram N. Vakharia aff003
Působiště autorů:
FARVET S.A.C., Chincha Alta, Ica, Peru
aff001; Universidad Nacional Mayor de San Marcos, School of Veterinary Medicine, San Borja, Lima, Peru
aff002; Institute of Marine & Environmental Technology, University of Maryland—Baltimore County, Baltimore, MD, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0209539
Souhrn
Although typical Newcastle disease virus (NDV) vaccines can prevent mortality, they are not effective in preventing viral shedding. To overcome this, genotype-matched vaccines have been proposed. To date, this approach has never been tested against genotype XII strains. In this study, we generated and assessed the protection against genotype XII challenge of two chimeric NDV vaccine strains (rLS1-XII-1 and rLS1-XII-2). The rLS1-XII-1 virus has the complete fusion protein (F) and the hemagglutinin-neuraminidase (HN) open reading frames replaced with those from genotype XII strain NDV/peacock/Peru/2011 (PP2011) in a recombinant LaSota (rLS1) backbone. In rLS1-XII-2 virus, cytoplasmic tails of F and HN proteins were restored to those of rLS1. In vitro evaluation showed that rLS1-XII-2 and the parental rLS1 strains replicate at higher efficiencies than rLS1-XII-1. In the first vaccine/challenge experiment, SPF chickens vaccinated with rLS1-XII-1 virus showed only 71.3% protection, whereas, rLS1 and rLS1-XII-2 vaccinated chickens were fully protected. In a second experiment, both rLS1-XII-2 and the commercial vaccine strain LaSota induced 100% protection. However, rLS1-XII-2 virus significantly reduced viral shedding, both in the number of shedding birds and in quantity of shed virus. In conclusion, we have developed a vaccine candidate capable of fully protecting chickens against genotype XII challenges. Furthermore, we have shown the importance of cytoplasmic tails in virus replication and vaccine competence.
Klíčová slova:
Birds – Chickens – Vaccination and immunization – Vaccines – Viral replication – Viral vaccines – Viral release – Newcastle disease virus
Zdroje
1. Hines NL, Miller CL. Avian paramyxovirus serotype-1: a review of disease distribution, clinical symptoms, and laboratory diagnostics. Vet. Med. Int. 2012, 2012: 708216. doi: 10.1155/2012/708216 22577610
2. Mayo MA. A summary of taxonomic changes recently approved by ICTV. Arch. Virol. 2002, vol. 147, no. 8, pp. 1655–1663. doi: 10.1007/s007050200039 12181683
3. Peeters BP, Gruijthuijsen YK, de Leeuw OS, Gielkens AL. Genome replication of Newcastle disease virus: involvement of the rule-of-six. Arch. Virol. 2000, 145, 9, 1829–1845. doi: 10.1007/s007050070059 11043944
4. Zhao H, Peeters BPH. Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication. J. Gen. Virol. 2003, 84(4), 781–788.
5. Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J. Virol. 2006, 80(22), 11062–11073. doi: 10.1128/JVI.00726-06 16971425
6. Dolganiuc V, McGinnes L, Luna EJ, Morrison TG. Role of the cytoplasmic domain of the Newcastle disease virus fusion protein in association with lipid rafts. J. Virol. 2003, 77(24), 12968–12979. doi: 10.1128/JVI.77.24.12968-12979.2003 14645553
7. Liu YC, Grusovin J, Adams TE. Electrostatic Interactions between Hendra Virus Matrix Proteins Are Required for Efficient Virus-Like-Particle Assembly. J. Virol. 2018, 92(13), 01.
8. Peeters BP, de Leeuw OS, Koch G, Gielkens AL. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73(6), 5001–5009. 10233962
9. Ogasawara T, Gotoh B, Suzuki H, Asaka J, Shimokata K, Rott R, et al. Expression of factor X and its significance for the determination of paramyxovirus tropism in the chick embryo. EMBO J. 1992, 11(2), 467–472. 1371460
10. Diel DG, da Silva LHA, Liu H, Wang Z, Miller PJ, Afonso CL. Genetic diversity of avian paramyxovirus type 1: proposal for a unified nomenclature and classification system of Newcastle disease virus genotypes. Infect. Genet. Evol. 2012, 12(8), 1770–1779. doi: 10.1016/j.meegid.2012.07.012 22892200
11. Snoeck CJ, Owoade AA, Couacy-Hymann E, Alkali BR, Okwen MP, Adeyanju AT, et al. High genetic diversity of Newcastle disease virus in poultry in West and Central Africa: cocirculation of genotype XIV and newly defined genotypes XVII and XVIII. J. Clin. Microbiol. 2013, 51(7), 2250–2260. doi: 10.1128/JCM.00684-13 23658271
12. Le XTK, Doan HTT, Le TH. Molecular analysis of Newcastle disease virus isolates reveals a novel XIId subgenotype in Vietnam. Arch. Virol. 2018, 163(11), 3125–3130. doi: 10.1007/s00705-018-3961-0 30054746
13. Chumbe A, Izquierdo-Lara R, Tataje L, Gonzalez R, Cribillero G, González AE, et al. Pathotyping and Phylogenetic Characterization of Newcastle Disease Viruses Isolated in Peru: Defining Two Novel Subgenotypes within Genotype XII. Avian Dis. 2017, 61(1), 16–24. doi: 10.1637/11456-062016-Reg 28301239
14. Chumbe A, Izquierdo-Lara R, Tataje-Lavanda L, Figueroa A, Segovia K, Gonzalez R, et al. Characterization and Sequencing of a Genotype XII Newcastle Disease Virus Isolated from a Peacock (Pavo cristatus) in Peru. Genome Announc. 2015, 3(4), e00792–15. doi: 10.1128/genomeA.00792-15 26227592
15. Diel DG, Susta L, Cardenas Garcia S, Killian ML, Brown CC, Miller PJ, et al. Complete genome and clinicopathological characterization of a virulent Newcastle disease virus isolate from South America. J. Clin. Microbiol. 2012, 50(2), 378–387. doi: 10.1128/JCM.06018-11 22135263
16. Liu H, Lv Y, Afonso CL, Ge S, Zheng D, Zhao Y, Wang Z. Complete Genome Sequences of New Emerging Newcastle Disease Virus Strains Isolated from China,” Genome Announc. 2013, 1(1), e00129–12. doi: 10.1128/genomeA.00129-12 23469337
17. OIE. World Animal Health Information Database (WAHID) Interface. Available online: https://www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/statusdetail. (Accessed on 20 October 2018).
18. Miller PJ, King DJ, Afonso CL, Suarez DL. Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge. Vaccine. 2007, 25(41), 7238–7246. doi: 10.1016/j.vaccine.2007.07.017 17719150
19. Miller PJ, Estevez C, Yu Q, Suarez DL, King DJ. Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Dis. 2009, 1, 39–49.
20. Wajid A, Basharat A, Bibi T, Rehmani SF. Comparison of protection and viral shedding following vaccination with Newcastle disease virus strains of different genotypes used in vaccine formulation. Trop. Anim. Health Prod. 2018, 50(7), 1645–1651. doi: 10.1007/s11250-018-1607-6 29728823
21. Cho SH, Kwon HJ, Kim TE, Kim JH, Yoo HS, Park MH, et al. Characterization of a recombinant Newcastle disease virus vaccine strain. Clin. Vaccine Immunol. 2008, 15(10), 1572–1579. doi: 10.1128/CVI.00156-08 18768673
22. Kim S-H, Wanasen N, Paldurai A, Xiao S, Collins PL, Samal SK. Newcastle disease virus fusion protein is the major contributor to protective immunity of genotype-matched vaccine. PloS One. 2013, 8(8), e74022. doi: 10.1371/journal.pone.0074022 24015313
23. Dortmans JC, Peeters BP, Koch G. Newcastle disease virus outbreaks: vaccine mismatch or inadequate application? Vet. Microbiol. 2012. 160(1–2), 17–22. doi: 10.1016/j.vetmic.2012.05.003 22655976
24. Liu H, de Almeida RS, Gil P, Majó N, Nofrarías M, Briand FX, et al. Can genotype mismatch really affect the level of protection conferred by Newcastle disease vaccines against heterologous virulent strains? Vaccine. 2018, 36(27), 3917–3925. doi: 10.1016/j.vaccine.2018.05.074 29843999
25. Hu Z, Hu S, Meng C, Wang X, Zhu J, Liu X. Generation of a genotype VII Newcastle disease virus vaccine candidate with high yield in embryonated chicken eggs. Avian Dis. 2011, 55(3), 391–397. doi: 10.1637/9633-122410-Reg.1 22017036
26. Xiao S, Nayak B, Samuel A, Paldurai A, Kanabagatte Basavarajappa M, Prajitno TY, et al. Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain. PLOS ONE. 2012, 12, e52751.
27. Kim SH, Chen Z, Yoshida A, Paldurai A, Xiao S, Samal SK. Evaluation of fusion protein cleavage site sequences of Newcastle disease virus in genotype matched vaccines. PLOS ONE. 2017, 12(3), e0173965. doi: 10.1371/journal.pone.0173965 28339499
28. Chumbe A, Izquierdo-Lara R, Calderón K, Fernández-Díaz M, Vakharia VN. Development of a novel Newcastle disease virus (NDV) neutralization test based on recombinant NDV expressing enhanced green fluorescent protein. Virol. J. 2017, 14(1), 232. doi: 10.1186/s12985-017-0900-8 29169354
29. World Organization for Animal Health, Terrestrial Manual. Paris, 2012.
30. Kim SH, Subbiah M, Samuel AS, Collins PL, Samal SK. Roles of the fusion and hemagglutinin-neuraminidase proteins in replication, tropism, and pathogenicity of avian paramyxoviruses. J. Virol. 2011, 85(17), 8582–8596. doi: 10.1128/JVI.00652-11 21680512
31. Kai Y, Hu Z, Xu H, Hu S, Zhu J, Hu J, et al. The M, F and HN genes of genotype VIId Newcastle disease virus are associated with the severe pathological changes in the spleen of chickens. Virol. J. 2015, 12:133. doi: 10.1186/s12985-015-0366-5 26336954
32. Kim SH, Yan Y, Samal SK. Role of the cytoplasmic tail amino acid sequences of Newcastle disease virus hemagglutinin-neuraminidase protein in virion incorporation, cell fusion, and pathogenicity. J. Virol. 2009, 83(19), 10250–10255. doi: 10.1128/JVI.01038-09 19640990
33. Samal S, Khattar SK, Paldurai A, Palaniyandi S, Zhu X, Collins PL, et al. Mutations in the cytoplasmic domain of the Newcastle disease virus fusion protein confer hyperfusogenic phenotypes modulating viral replication and pathogenicity. J. Virol. 2013, 87(18), 10083–10093. doi: 10.1128/JVI.01446-13 23843643
34. Perozo F, Villegas P, Dolz R, Afonso CL, Purvis LB. The VG/GA strain of Newcastle disease virus: mucosal immunity, protection against lethal challenge and molecular analysis. Avian Pathol. 2008, 37(3), 237–245. doi: 10.1080/03079450802043734 18568649
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy