Measuring the impact of chronic conditions and associated multimorbidity on health-related quality of life in the general population in Hong Kong SAR, China: A cross-sectional study
Autoři:
Eliza Lai yi Wong aff001; Richard Huan Xu aff001; Annie Wai ling Cheung aff001
Působiště autorů:
The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224970
Souhrn
Objectives
The aims of this study were to 1) evaluate the impact of eight common chronic conditions and multimorbidity on preference-based health-related quality of life (HRQoL), and 2) estimate the minimally important difference (MID) in the general population of Hong Kong (HK).
Design
Data were analyzed using secondary data analysis based on a cross-sectional, population-based validation study of HK’s general population.
Participants
A representative sample was recruited across eighteen geographical districts in HK, and 1,014 HK Chinese residents aged 18 years and older participated in the survey. The prevalence of chronic conditions among the respondents was 30.3%.
Interventions
The HRQoL was assessed using the locally validated version of EQ-5D-5L. The five-dimension descriptive system, and the utility scores of EQ-5D-5L were used as the dependent variable in the study. Eight common chronic conditions, multimorbidity, and demographic characteristics were defined as predictors in the analysis. Chi-squared test, analysis of variance (ANOVA), logistic regression, and Tobit regression models were used to analyze the data. A simulation-based approach was used to calculate the MID based on instrument-defined single level transitions.
Results
The findings indicated that respondents with physical disabilities were more likely to report problems on all five dimensions of the EQ-5D-5L than those with other chronic conditions. In addition, respondents with multiple chronic conditions were more likely to report health problems and lower utility scores of EQ-5D-5L. The mean of MID estimates among the respondents in HK was 0.093 (standard deviation = 0.001), which is higher than in other Asian countries.
Conclusions
The findings suggest that having more chronic conditions is strongly associated with a lower HRQoL. Healthcare reforms to address foreseeable challenges arising as more patients live with chronic conditions and multimorbidity could improve the HRQoL of HK citizens.
Klíčová slova:
Age groups – Disabilities – Educational attainment – Elderly – Geriatric depression – Geriatrics – Quality of life – Socioeconomic aspects of health
Zdroje
1. Epping-Jordan J.Innovative care for chronic conditions: building blocks for action: global report. 2002.
2. Parker L, Moran GM, Roberts LM, et al.The burden of common chronic disease on healthrelated quality of life in an elderly communitydwelling population in the UK. Fam Pract 2014;31:557–63. doi: 10.1093/fampra/cmu035 24987022
3. Boyd, Cynthia M., Fortin M.Future of Multimorbidity Research: How Should Understanding of Multimorbidi …: Start Your Search! Public Health Rev 2010;32:451–74.
4. Smith SM, Soubhi H, Fortin M, et al.Managing patients with multimorbidity: systematic review of interventions in primary care and community settings. BMJ 2012;345:e5205. doi: 10.1136/bmj.e5205 22945950
5. Wallace E, Salisbury C, Guthrie B, et al.Managing patients with multimorbidity in primary care. BMJ Br. Med. J.2015;350. doi: 10.1136/bmj.h176 25646760
6. Marengoni A, Angleman S, Melis R, et al.Aging with multimorbidity: A systematic review of the literature. Ageing Res Rev 2011;10:430–9. doi: 10.1016/j.arr.2011.03.003 21402176
7. Salisbury C, Man M-S, Bower P, et al.Management of multimorbidity using a patient-centred care model: a pragmatic cluster-randomised trial of the 3D approach. Lancet (London, England) 2018;392:41–50. https://dx.doi.org/10.1016/S0140-6736(18)31308-4
8. Lawson KD, Mercer SW, Wyke S, et al.Double trouble: the impact of multimorbidity and deprivation on preference-weighted health related quality of life a cross sectional analysis of the Scottish Health Survey. Int J Equity Health 2013;12. doi: 10.1186/1475-9276-12-67 23962150
9. Hunger M, Thorand B, Schunk M, et al.Multimorbidity and health-related quality of life in the older population: results from the German KORA-Age study. Health Qual Life Outcomes 2011;9:53. doi: 10.1186/1477-7525-9-53 21767362
10. Wang L, Palmer A, Cocker F, et al.Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL. Health Qual Life Outcomes 2017;15. doi: 10.1186/s12955-016-0580-x 28069026
11. Park B, Ock M, Lee HA, et al.Multimorbidity and health-related quality of life in Koreans aged 50 or older using KNHANES 2013–2014. Health Qual Life Outcomes 2018;16:186–96. doi: 10.1186/s12955-018-1016-6 30219061
12. Pati S, Swain S, Knottnerus JA, et al.Health related quality of life in multimorbidity: a primary-care based study from Odisha, India. Health Qual Life Outcomes 2019;17. doi: 10.1186/s12955-019-1180-3 31277648
13. Chung RY, Mercer S, Lai FTT, et al.Socioeconomic determinants of multimorbidity: A population-based household survey of Hong Kong Chinese. PLoS One 2015;10:1–15. doi: 10.1371/journal.pone.0140040 26451589
14. Chin WY, Choi EPH, Wan EYF, et al.Health-related quality of life mediates associations between multi-morbidity and depressive symptoms in Chinese primary care patients. Fam Pract 2016;33:61–8. doi: 10.1093/fampra/cmv090 26567547
15. Brazier J.Measuring and valuing health benefits for economic evaluation. Second edi. Oxford: Oxford: Oxford University Press2007.
16. Abdin E, Subramaniam M, Vaingankar JA, et al.Measuring health-related quality of life among adults in Singapore: population norms for the EQ-5D. Qual Life Res 2013;22:2983–91. doi: 10.1007/s11136-013-0405-x 23549857
17. Mcclure NS, Sayah FAl, Xie F, et al.Instrument-Defined Estimates of the Minimally Important Difference for EQ-5D-5L Index Scores. Value Heal 2017;20:644–50. doi: 10.1016/j.jval.2016.11.015 28408007
18. Wong ELY, Ramos-Goñi JM, Cheung AWL, et al.Assessing the Use of a Feedback Module to Model EQ-5D-5L Health States Values in Hong Kong. Patient 2018;11:235–47. doi: 10.1007/s40271-017-0278-0 29019161
19. Hong Kong Census and Statistics Department.Hong Kong Population Census Thematic Report: Ethnic Minorities. 2011.
20. Oppe M, Devlin NJ, VanHout B, et al.A program of methodological research to arrive at the new international eq-5d-5l valuation protocol. Value Heal 2014;17:445–53. doi: 10.1016/j.jval.2014.04.002 24969006
21. Wong EL-Y, Cheung AW-L, Wong AY-K, et al.Normative Profile of Health-Related Quality of Life for Hong Kong General Population Using Preference-Based Instrument EQ-5D-5L. Value Heal 2019;22:916–24. doi: 10.1016/j.jval.2019.02.014 31426933
22. Pickard AS, Neary MP, Cella D.Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer. Health Qual Life Outcomes 2010;8:4. doi: 10.1186/1477-7525-8-4
23. Mcclure NS, Sayah FAl, Ohinmaa A, et al.Minimally Important Difference of the EQ-5D-5L Index Score in Adults with Type 2 Diabetes. Value Heal 2018;21:1090–7. doi: 10.1016/j.jval.2018.02.007 30224114
24. Walker V, Perret-Guillaume C, Kesse-Guyot E, et al.Effect of Multimorbidity on Health-Related Quality of Life in Adults Aged 55 Years or Older: Results from the SU.VI.MAX 2 Cohort. PLoS One 2016;11:e0169282. doi: 10.1371/journal.pone.0169282 28033414
25. Williams Joni S, Egede Leonard E.The Association Between Multimorbidity and Quality of Life, Health Status and Functional Disability. Am J Med Sci 2016;352:45–52. doi: 10.1016/j.amjms.2016.03.004 27432034
26. Abdin E, Subramaniam M, Vaingankar JA, et al.Population norms for the EQ-5D index scores using Singapore preference weights. Qual Life Res 2015;24:1545–53. doi: 10.1007/s11136-014-0859-5 25394893
27. Shiroiwa T, Fukuda T, Ikeda S, et al.Japanese population norms for preference-based measures: EQ-5D-3L, EQ-5D-5L, and SF-6D. Qual Life Res 2016;25:707–19. doi: 10.1007/s11136-015-1108-2 26303761
28. Tollisen A, Selvaag AM, Aulie HA, et al.Physical Functioning, Pain, and Health‐Related Quality of Life in Adults With Juvenile Idiopathic Arthritis: A Longitudinal 30‐Year Followup Study. Arthritis Care Res (Hoboken) 2018;70:741–9. doi: 10.1002/acr.23327 28732134
29. Mouthon L, Mestre-Stanislas C, Bérezné A, et al.Impact of digital ulcers on disability and health-related quality of life in systemic sclerosis. Ann. Rheum. Dis.2010;69:214. doi: 10.1136/ard.2008.094193 19221115
30. Wassenaar MJE, Biermasz NR, Kloppenburg M, et al.Clinical osteoarthritis predicts physical and psychological QoL in acromegaly patients. Growth Horm IGF Res 2010;20:226–33. doi: 10.1016/j.ghir.2010.02.003 20194043
31. Ullrich A, Ascherfeld L, Marx G, et al.Quality of life, psychological burden, needs, and satisfaction during specialized inpatient palliative care in family caregivers of advanced cancer patients. BMC Palliat Care 2017;16:31. doi: 10.1186/s12904-017-0206-z 28486962
32. LoR SK, Woo J, Zhoc KCH, et al.Quality of life of palliative care patients in the last two weeks of life. J Pain Symptom Manage 2002;24:388–97. doi: 10.1016/s0885-3924(02)00504-3 12505207
33. Lacnet editorial.Making more of multimorbidity: an emerging priority. Lancet 2018;391:1637. doi: 10.1016/S0140-6736(18)30941-3 29726322
34. Mair F.Multimorbidity: what next? Br J Gen p 2017;:248–9.
35. Wallace E, Salisbury C.Managing patients with multimorbidity in primary care. Br Med J 2015;176:6–11. doi: 10.1136/bmj.h176 25646760
36. O’Brien R, Wyke S, Guthrie B, et al.An ‘endless struggle’: a qualitative study of general practitioners’ and practice nurses’ experiences of managing multimorbidity in socio-economically deprived areas of Scotland. Chronic Illn 2011;7:45–59. doi: 10.1177/1742395310382461 20974642
37. LeReste JY, Nabbe P, Manceau B, et al.The European General Practice Research Network presents a comprehensive definition of multimorbidity in family medicine and long term care, following a systematic review of relevant literature. J. Am. Med. Dir. Assoc.2013;14:319–25. doi: 10.1016/j.jamda.2013.01.001 23411065
38. Hancco-saavedra J, Prados-torres A, Calder A, et al.Multimorbidity patterns: a systematic review. J Clin Epidemiol 2014;67:254–66. doi: 10.1016/j.jclinepi.2013.09.021 24472295
39. Mielck A, Reitmeir P, Vogelmann M, et al.Impact of educational level on health-related quality of life (HRQL): results from Germany based on the EuroQol 5D (EQ-5D). Eur J Public Health 2013;23:45–9. doi: 10.1093/eurpub/ckr206 22434205
40. Schandl AR, Johar A, Mälberg K, et al.Education level and health-related quality of life after oesophageal cancer surgery: A nationwide cohort study. BMJ Open 2018;8:<xocs:firstpage xmlns:xocs = ""/>. doi: 10.1136/bmjopen-2017-020702 30139895
41. XU RH, Wong ELY.Involvement in shared decision-making for patients in public specialist outpatient clinics in Hong Kong. Patient Prefer Adherence 2017;11:505–12. doi: 10.2147/PPA.S126316 28331297
42. Gheshlagh RG, Sayehmiri K, Ebadi A, et al.Resilience of Patients With Chronic Physical Diseases: A Systematic Review and Meta-Analysis. Iran Red Crescent Med J 2016;18:e38562–e38562. doi: 10.5812/ircmj.38562 27703800
43. Brazier JE, Rowen D, Lloyd A, et al.Evolution of EuroQoL Future Directions in Valuing Benefits for Estimating QALYs: Is Time Up for the EQ-5D? Value Heal 2019;22:62–8. doi: 10.1016/j.jval.2018.12.001 30661635
44. Lakdawalla DN, Doshi JA, Garrison LP, et al.Defining Elements of Value in Health Care—A Health Economics Approach: An ISPOR Special Task Force Report [3]. Value Heal 2018;21:131–9. doi: 10.1016/j.jval.2017.12.007 29477390
45. Mcclure NS, Sayah FAl, Xie F, et al.Instrument-Defined Estimates of the Minimally Important Difference for EQ-5D-5L Index Scores. Value Heal 2017;20:644–50. doi: 10.1016/j.jval.2016.11.015 28408007
46. Crosby RD, Kolotkin RL, Williams GR.Defining clinically meaningful change in health-related quality of life. J Clin Epidemiol 2003;56:395–407. doi: 10.1016/s0895-4356(03)00044-1 12812812
47. Coretti S, Ruggeri M, Mcnamee P.The minimum clinically important difference for EQ-5D index: a critical review. Expert Rev. Pharmacoecon. Outcomes Res.2014;14:221–33. doi: 10.1586/14737167.2014.894462 24625040
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy