Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress
Autoři:
Renan Gonçalves da Silva aff001; Thiago Mateus Rosa-Santos aff001; Suzelei de Castro França aff002; Pratibha Kottapalli aff003; Kameswara Rao Kottapalli aff003; Sonia Marli Zingaretti aff002
Působiště autorů:
São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil
aff001; Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
aff002; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0217806
Souhrn
Although several metallic elements are required for plant growth, excessive amounts of aluminum ions (Al3+) can result in the inhibition of root growth, thus triggering water and nutrient deficiencies. Plants under stress undergo gene expression changes in specific genes or post-transcriptional gene regulators, such as miRNAs, that can lead to stress tolerance. In this study, we investigated the miRNAs involved in the response of sugarcane to aluminum stress. Four miRNA libraries were generated using sugarcane roots of one tolerant and one sensitive sugarcane cultivar grown under aluminum stress and used to identify the miRNAs involved in the sugarcane aluminum toxicity response. The contrast in field phenotypes of sugarcane cultivars in the field during aluminum stress was reflected in the micro-transcriptome expression profiles. We identified 394 differentially expressed miRNAs in both cultivars, 104 of which were tolerant cultivar-specific, 116 were sensitive cultivar-specific, and 87 of which were common among cultivars. In addition, 52% of differentially expressed miRNAs were upregulated in the tolerant cultivar while the majority of differentially expressed miRNAs in the sensitive cultivar were downregulated. Real-time quantitative polymerase chain reaction was used to validate the expression levels of differentially expressed miRNAs. We also attempted to identify target genes of miRNAs of interest. Our results show that selected differentially expressed miRNAs of aluminum-stressed sugarcane cultivars play roles in signaling, root development, and lateral root formation. These genes thus may be important for aluminum tolerance in sugarcane and could be used in breeding programs to develop tolerant cultivars.
Klíčová slova:
Aluminum – Gene expression – Gene regulation – MicroRNAs – Plant resistance to abiotic stress – Root growth – Sugarcane – Transcription factors
Zdroje
1. Food and Agriculture Organization of the United Nations–FAOSTAT. 2017. Available from: http://www.fao.org/faostat/en/#data/QC/visualize
2. OECD/Food and Agriculture Organization of the United Nations (2015), OECD-FAO Agricultural Outlook 2015, OECD Publishing, Paris. http://dx.doi.org/10.1787/agr_2015-en
3. Outlook Fiesp. 2013. Projeções para o agronegócio brasileiro. Outlook Fiesp 2023 projeções para o agronegócio brasileiro/Federação das indústrias do estado de São Paulo–São Paulo: FIESP, 115p. Available from: http://bibspi.planejamento.gov.br/handle/iditem/317
4. Bhalerao SA, Prabhu DV. Aluminium toxicity in plants—A review. J Applicable Chem. 2013;2: 447–474.
5. von Uexküll HR, Mutert E. Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Raymet GE, Probert ME, editors. Plant-soil interaction at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, the Netherlands; 1995.
6. Vitorello VA, Capaldi FR, Stefanuto VA. Recent advances in aluminum toxicity and resistance in higher plants. Braz J Plant Physiol. 2005;17: 129–143. http://dx.doi.org/10.1590/S1677-04202005000100011
7. Doncheva S, Amenos M, Poschenrieder C, Barcelo J. Root cell patterning: a primary target for aluminum toxicity in maize. J Exp Bot. 2005;56: 1213–1220. https://doi.org/10.1093/jxb/eri115
8. Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW. Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol. 2000;123: 543–552. https://doi.org/10.1104/pp.123.2.543
9. Drummont RD, Guimarães TC, Felix J, Ninamango-Cárdenas FR, Carneiro NP, Paiva E, Menossi M. Prospecting sugarcane genes involved in aluminum tolerance. Genet Mol Biol. 2001;24: 221–230. http://dx.doi.org/10.1590/S1415-47572001000100029
10. Gupta N, Gaurav SS, Kumar A. Molecular basis of aluminium toxicity in plants: A review. Am J Plant Sci. 2013;4: 21–37. http://dx.doi.org/10.4236/ajps.2013.412A3004
11. Blamey FPC. The role of the root cell wall in aluminum toxicity. In: Ae N., Arihara J., Okada K., Srinivasan A., editors. Plant Nutrient Acquisition. New Perspectives, Springer Verlag, New York; 2001. pp. 201–226.
12. Watt D. Aluminum-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot. 2003;54(385): 1163–1174. doi: 10.1093/jxb/erg128 12654867
13. Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 2014;5: 151. https://doi.org/10.3389/fpls.2014.00151
14. Gupta OP, Sharma P, Gupta RK, Sharma I. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. Plant Mol Biol. 2014;84: 1–18. https://doi.org/10.1007/s11103-013-0120-6
15. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57: 19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218
16. Zhang H, Zhu JK. RNA-directed DNA methylation. Curr Opin Plant Biol. 2011;14(2): 142–147. https://doi.org/10.1016/j.pbi.2011.02.003
17. Li C, Zhang B. MicroRNAs in control of plant development. J Cell Physiol. 2016;231(2): 303–313. https://doi.org/10.1002/jcp.25125
18. Sunkar RW, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell. 2004;16(8): 2001–2019. doi: 10.1105/tpc.104.022830 15258262
19. Sun F, Guo G, Du J, Guo W, Peng H, Ni Z, Sun Q, Yao Y. Whole–genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol. 2014;14: 142. https://doi.org/10.1186/1471-2229-14-142
20. Kulcheski FR, Oliveira LFV, Molina LG, Almerão MP, Rodrigues FA, Marcolino J, Barbosa JF, Stolf-Moreira R, Nepomuceno AL, Marcelino-Guimarães FC, Abdelnoor RV, Nascimento LC, Carazzolle MF, Pereira GAG, Margis R. Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics. 2011;12: 307. https://doi.org/10.1186/1471-2164-12-307
21. Pérez-Quintero A, Quintero A, Urrego O, Vanegas P, López C. Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol. 2012;12: 29. https://doi.org/10.1186/1471-2229-12-29
22. Zhou ZS, Huang SQ, Yang ZM. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun. 2008;374(3): 538–542. https://doi.org/10.1016/j.bbrc.2008.07.083
23. Chen L, Wang T, Zhao M, Tian Q, Zhang W. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta. 2012;235(2): 375–386. https://doi.org/10.1007/s00425-011-1514-9
24. Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F, Vazquez F. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol. 2011;157(2): 683–691. https://doi.org/10.1104/pp.111.180083
25. Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell. 2006;18(8): 2051–2065. doi: 10.1105/tpc.106.041673 16861386
26. Gielen H, Remans T, Vangronsveld J, Cuypers A. MicroRNAs in metal stress: specific roles or secondary responses? Int J Mol Sci. 2012;13(12): 15826–15847. doi: 10.3390/ijms131215826 23443096
27. He H, He L, Gu M. Role of microRNAs in aluminum stress in plants. Plant Cell Rep. 2014;33(6): 831–836. doi: 10.1007/s00299-014-1565-z 24413694
28. Thiebaut F, Grativol C, Carnavale-Bottino M, Rojas CA, Tanurdzic LOS, Farinelli L, Martienssen RA, Hemerly AS, Ferreira PC. Computational identification and analysis of novel sugarcane microRNAs. BMC Genomics. 2012;13: 290. https://doi.org/10.1186/1471-2164-13-290.
29. Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M. microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS One 2012;7(10): e46703. doi: 10.1371/journal.pone.0046703 23071617
30. Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T Jr, Nogueira RM, Endres L, Menossi M. Effects of drought on the microtranscriptome of field-grown sugarcane plants. Planta. 2013;237(3): 783–798. https://doi.org/10.1007/s00425-012-1795-7
31. Gentile A, Dias LI, Mattos RS, Ferreira TH and Menossi M. MicroRNAs and drought responses in sugarcane. Front Plant Sci. 2015;6: 58. https://doi.org/10.3389/fpls.2015.00058
32. Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. Circ—Calif Agric Exp Stn. 1950;347: 1–32.
33. Varkonyi-Gasic E, Hellens RP. Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol. 2011;744: 145–157. https://doi.org/10.1007/978-1-61779-123-9_10
34. Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ. 2013;37(5): 1250–1258. doi: 10.1111/pce.12231 24237261
35. Ballén-Taborda PG, Ayling S, Rodríguez-Zapata F, Lopez-Lavalle LAB, Duitama J, Tohme J. Identification of Cassava microRNAs under abiotic stress. Int J Genomics. 2013;857986. doi: 10.1155/2013/857986 24328029
36. Zhou J, Cheng Y, Yin M, Yang E, Gong W, Liu C, et al. Identification of Novel miRNAs and miRNA expression profiling in wheat hybrid necrosis. PLoS One. 2015;10(2): e011757. https://doi.org/10.1371/journal.pone.0117507
37. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. Prediction of plant microRNA targets. Cell 2002;110(4): 513–520. https://doi.org/10.1016/S0092-8674(02)00863-2
38. Carnavale Bottino M, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, et al. High-Throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One. 2013;8(3): e59423. doi: 10.1371/journal.pone.0059423 23544066
39. Shao HB, Chu LY, Lu Z, Kang CM. Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci. 2008; 4(1):8–14. https://doi.org/10.7150/ijbs.4.8
40. Dreyer BH, Schippers JHM. Copper‐Zinc superoxide dismutases in plants: evolution, enzymatic properties, and beyond. Annu. Plant Rev. Online. 2019; (3). https://doi.org/10.1002/9781119312994.apr0705
41. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312(5772): 436–439. doi: 10.1126/science.aae0382 16627744
42. Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435(7041): 441–445. doi: 10.1038/nature03543 15917797
43. Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R. Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res. 2011;10(4): 2817–2832. doi: 10.4238/2011.November.10.4 22095606
44. Wu L, Yu J, Shen Q, Huang L, Wu D, Zhang G. Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genomics. 2018;19(1): 560. https://doi.org/10.1186/s12864-018-4953-x
45. Zhao Y, Wen H, Teotia S, Du Y, Zhang J, Li J, Sun H, Tang G, Peng T, Zhao Q. Suppression of microRNA159 impacts multiple agronomic traits in rice (Oryza sativa L.). BMC Plant Biol. 2017;17(1): 215. https://doi.org/10.1186/s12870-017-1171-7
46. Xue T, Liu Z, Dai X, Xiang F. Primary root growth in Arabidopsis thaliana is inhibited by the miR159 mediated repression of MYB33, MYB65 and MYB101. Plant Sci. 2017; 262: 182–189. http://dx.doi.org/10.1016/j.plantsci.2017.06.008
47. Bennet RJ, Breen CM. The aluminium signal: New dimensions to mechanisms of aluminium tolerance. Plant and Soil. 1991;134: 153–166. https://doi.org/10.1007/BF00010728
48. Dantas ACM, Fortes GRL, Silva JB, Nezi NA, Rodrigues AC. Tolerância ao alumínio em porta-enxertos somaclonais de macieira cultivados em solução nutritiva. Pesq agropec bras. 2001;36(4): 615–623. http://dx.doi.org/10.1590/S0100-204X2001000400004
49. Gierth M, Mäser P. Potassium transporters in plants–Involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett. 2007; 581: 2348–2356. http://dx.doi.org/10.1016/j.febslet.2007.03.035
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy