Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood–brain-barrier permeability
Autoři:
Jocelyn Rivera aff001; Raymond A. Isidro aff002; Raisa Y. Loucil-Alicea aff002; Myrella L. Cruz aff002; Caroline B. Appleyard aff002; Angel A. Isidro aff002; Gladys Chompre aff003; Krystal Colon-Rivera aff001; Richard J. Noel, Jr. aff002
Působiště autorů:
HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
aff001; Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
aff002; Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225760
Souhrn
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Klíčová slova:
Astrocytes – Gastrointestinal tract – Hippocampus – HIV-1 – Ileum – Inflammation – Macrophages – Tight junctions
Zdroje
1. Gupta RK, Wainberg MA, Brun-Vezinet F, Gatell JM, Albert J, Sonnerborg A, et al. Oral antiretroviral drugs as public health tools for HIV prevention: global implications for adherence, drug resistance, and the success of HIV treatment programs. J Infect Dis. 2013;207 Suppl 2:S101–6. Epub 2013/05/25. doi: 10.1093/infdis/jit108 23687287; PubMed Central PMCID: PMC3708737.
2. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ. 2005;12 Suppl 1:878–92. Epub 2005/04/16. doi: 10.1038/sj.cdd.4401623 15832177.
3. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Annals of neurology. 2009;66(2):253–8. Epub 2009/09/11. doi: 10.1002/ana.21697 19743454.
4. Huang Z, Nair M. A CRISPR/Cas9 guidance RNA screen platform for HIV provirus disruption and HIV/AIDS gene therapy in astrocytes. Scientific Reports. 2017;7(1):5955. doi: 10.1038/s41598-017-06269-x 28729655
5. Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia. 2018;66(7):1363–81. doi: 10.1002/glia.23310 29464785
6. Al-Harthi L, Nath A. Letter to Editor. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology. 2019;14(1):6. Epub 2018/12/14. doi: 10.1007/s11481-018-09827-w 30542907.
7. Henderson LJ, Narasipura SD, Adarichev V, Kashanchi F, Al-Harthi L. Identification of Novel T Cell Factor 4 (TCF-4) Binding Sites on the HIV Long Terminal Repeat Which Associate with TCF-4, β-Catenin, and SMAR1 To Repress HIV Transcription. Journal of Virology. 2012;86(17):9495–503. doi: 10.1128/JVI.00486-12 22674979
8. Narasipura SD, Kim S, Al-Harthi L. Epigenetic Regulation of HIV-1 Latency in Astrocytes. Journal of Virology. 2014;88(5):3031–8. doi: 10.1128/JVI.03333-13 24352441
9. Li GH, Henderson L, Nath A. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Curr HIV Res. 2016;14(5):373–81. Epub 2016/10/11. doi: 10.2174/1570162x14666161006121455 27719663.
10. Prevedel L, Ruel N, Castellano P, Smith C, Malik S, Villeux C, et al. Identification, Localization, and Quantification of HIV Reservoirs Using Microscopy. Current protocols in cell biology. 2019;82(1):e64. Epub 2018/09/29. doi: 10.1002/cpcb.64 30265439; PubMed Central PMCID: PMC6386609.
11. Rao VR, Eugenin EA, Prasad VR. Evaluating the Role of Viral Proteins in HIV-Mediated Neurotoxicity Using Primary Human Neuronal Cultures. Methods in molecular biology (Clifton, NJ). 2016;1354:367–76. Epub 2015/12/31. doi: 10.1007/978-1-4939-3046-3_25 26714725; PubMed Central PMCID: PMC5050920.
12. Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011;31(26):9456–65. Epub 2011/07/01. doi: 10.1523/jneurosci.1460-11.2011 21715610; PubMed Central PMCID: PMC3132881.
13. Luo X, He JJ. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes. Journal of neurovirology. 2015;21(1):66–80. Epub 2014/12/19. doi: 10.1007/s13365-014-0304-0 25522787.
14. Li GH, Anderson C, Jaeger L, Do T, Major EO, Nath A. Cell-to-cell contact facilitates HIV transmission from lymphocytes to astrocytes via CXCR4. Aids. 2015;29(7):755–66. Epub 2015/05/20. doi: 10.1097/QAD.0000000000000605 25985398; PubMed Central PMCID: PMC4438861.
15. Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, et al. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology. 2017;14(1):47. Epub 2017/10/19. doi: 10.1186/s12977-017-0370-5 29037245; PubMed Central PMCID: PMC5644262.
16. Khan MB, Lang MJ, Huang M-B, Raymond A, Bond VC, Shiramizu B, et al. Nef exosomes isolated from the plasma of individuals with HIV-associated dementia (HAD) can induce Aβ1–42 secretion in SH-SY5Y neural cells. Journal of neurovirology. 2016;22(2):179–90. doi: 10.1007/s13365-015-0383-6 26407718
17. Raymond AD, Diaz P, Chevelon S, Agudelo M, Yndart-Arias A, Ding H, et al. Microglia-derived HIV Nef+ exosome impairment of the blood-brain barrier is treatable by nanomedicine-based delivery of Nef peptides. Journal of neurovirology. 2016;22(2):129–39. Epub 2015/12/04. doi: 10.1007/s13365-015-0397-0 26631079.
18. Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, et al. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nature immunology. 2009;10:1008–17. doi: 10.1038/ni.1753 19648924.
19. Uhl J, Gujarathi S, Waheed AA, Gordon A, Freed EO, Gousset K. Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. Journal of cell communication and signaling. 2018. Epub 2018/11/18. doi: 10.1007/s12079-018-0493-z 30443895.
20. Wang T, Green LA, Gupta SK, Kim C, Wang L, Almodovar S, et al. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS ONE. 2014;9(3):e91063. Epub 2014/03/13. doi: 10.1371/journal.pone.0091063 24608713; PubMed Central PMCID: PMC3946685.
21. Ferdin J, Goričar K, Dolžan V, Plemenitaš A, Martin JN, Peterlin BM, et al. Viral protein Nef is detected in plasma of half of HIV-infected adults with undetectable plasma HIV RNA. PloS one. 2018;13(1):e0191613. doi: 10.1371/journal.pone.0191613 29364927
22. Chaudhuri R, Lindwasser OW, Smith WJ, Hurley JH, Bonifacino JS. Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. Journal of virology. 2007;81:3877–90. doi: 10.1128/JVI.02725-06 17267500.
23. Garcia JV, Miller AD. Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature. 1991;350:508–11. doi: 10.1038/350508a0 2014052.
24. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L, Benarous R, et al. Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity. 1998;8:483–95. doi: 10.1016/s1074-7613(00)80553-1 9586638.
25. Schwartz O, Maréchal V, Le Gall S, Lemonnier F, Heard JM. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature medicine. 1996;2:338–42. doi: 10.1038/nm0396-338 8612235.
26. Pužar Dominkuš P, Ferdin J, Plemenitaš A, Peterlin BM, Lenassi M. Nef is secreted in exosomes from Nef.GFP-expressing and HIV-1-infected human astrocytes. Journal of neurovirology. 2017;23(5):713–24. Epub 2017/08/02. doi: 10.1007/s13365-017-0552-x 28762184; PubMed Central PMCID: PMC6010353.
27. Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK. HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis. 2017;8:e2542. doi: 10.1038/cddis.2016.467 28079886
28. Liu X, Shah A, Gangwani MR, Silverstein PS, Fu M, Kumar A. HIV-1 Nef induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors. Scientific reports. 2014;4:4450. Epub 2014/03/25. doi: 10.1038/srep04450 24658403; PubMed Central PMCID: PMC3963078.
29. Nitkiewicz J, Borjabad A, Morgello S, Murray J, Chao W, Emdad L, et al. HIV induces expression of complement component C3 in astrocytes by NF-κB-dependent activation of interleukin-6 synthesis. J Neuroinflammation. 2017;14(1):23. Epub 2017/01/27. doi: 10.1186/s12974-017-0794-9 28122624; PubMed Central PMCID: PMC5267445.
30. Gallo P, Frei K, Rordorf C, Lazdins J, Tavolato B, Fontana A. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. Journal of neuroimmunology. 1989;23:109–16. doi: 10.1016/0165-5728(89)90029-5 2656753.
31. Lau LT, Yu AC-H. Astrocytes Produce and Release Interleukin-1, Interleukin-6, Tumor Necrosis Factor Alpha and Interferon-Gamma Following Traumatic and Metabolic Injury. Journal of Neurotrauma. 2001;18(3):351–9. doi: 10.1089/08977150151071035 11284554.
32. Parnet P, Kelley KW, Bluthe RM, Dantzer R. Expression and regulation of interleukin-1 receptors in the brain. Role in cytokines-induced sickness behavior. J Neuroimmunol. 2002;125(1–2):5–14. Epub 2002/04/19. doi: 10.1016/s0165-5728(02)00022-x 11960635.
33. Lampa J, Westman M, Kadetoff D, Agreus AN, Le Maitre E, Gillis-Haegerstrand C, et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc Natl Acad Sci U S A. 2012;109(31):12728–33. Epub 2012/07/18. doi: 10.1073/pnas.1118748109 22802629; PubMed Central PMCID: PMC3411968.
34. Schenk M, Fabri M, Krutzik SR, Lee DJ, Vu DM, Sieling PA, et al. Interleukin-1β triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology. 2014;141(2):174–80. Epub 2013/09/17. doi: 10.1111/imm.12167 24032597; PubMed Central PMCID: PMC3904238.
35. Lu J, Goh SJ, Tng PYL, Deng YY, Ling E-A, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Frontiers in bioscience (Landmark edition). 2009;14:3795–813. doi: 10.2741/3489 19273311.
36. Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain Pathol. 1994;4(3):229–37. doi: 10.1111/j.1750-3639.1994.tb00838.x 7952264
37. Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S. Systemic inflammatory response following acute traumatic brain injury. Frontiers in bioscience. 2009;14:3795–813. Epub 2009/03/11. doi: 10.2741/3489 19273311.
38. Sato M, Chang E, Igarashi T, Noble LJ. Neuronal injury and loss after traumatic brain injury: time course and regional variability. Brain Res. 2001;917(1):45–54. Epub 2001/10/17. doi: 10.1016/s0006-8993(01)02905-5 11602228.
39. Akay C, Lindl KA, Shyam N, Nabet B, Goenaga-Vazquez Y, Ruzbarsky J, et al. Activation status of integrated stress response pathways in neurons and astrocytes of HAND cortex. Neuropathology and Applied Neurobiology. 2011:no-no. doi: 10.1111/j.1365-2990.2011.01215.x 21883374
40. Bansal V, Costantini T, Kroll L, Peterson C, Loomis W, Eliceiri B, et al. Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis. Journal of neurotrauma. 2009;26:1353–9. doi: 10.1089/neu.2008-0858 19344293.
41. Hang C-H, Shi J-X, Li J-S, Wu W, Yin H-X. Alterations of intestinal mucosa structure and barrier function following traumatic brain injury in rats. World journal of gastroenterology. 2003;9:2776–81. doi: 10.3748/wjg.v9.i12.2776 14669332.
42. Kao CH, ChangLai SP, Chieng PU, Yen TC. Gastric emptying in head-injured patients. The American journal of gastroenterology. 1998;93:1108–12. doi: 10.1111/j.1572-0241.1998.00338.x 9672339.
43. Chompre G, Cruz E, Maldonado L, Rivera-Amill V, Porter JT, Noel RJ. Astrocytic expression of HIV-1 Nef impairs spatial and recognition memory. Neurobiology of disease. 2013;49:128–36. doi: 10.1016/j.nbd.2012.08.007 22926191.
44. Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocritical care. 2009;11:417–26. doi: 10.1007/s12028-009-9242-8 19548120.
45. Pelosi P, Rocco PR. The lung and the brain: a dangerous cross-talk. Crit Care. 2011;15(3):168. doi: 10.1186/cc10259 21722336; PubMed Central PMCID: PMC3219008.
46. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:5354–9. doi: 10.1073/pnas.1019378108 21402903.
47. Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal immunology. 2012;5:7–18. doi: 10.1038/mi.2011.55 22089028.
48. Crothers K, Thompson BW, Burkhardt K, Morris A, Flores SC, Diaz PT, et al. HIV-associated lung infections and complications in the era of combination antiretroviral therapy. Proceedings of the American Thoracic Society. 2011;8:275–81. doi: 10.1513/pats.201009-059WR 21653528.
49. Plata-Salaman CR, Ffrench-Mullen JM. Intracerebroventricular administration of a specific IL-1 receptor antagonist blocks food and water intake suppression induced by interleukin-1 beta. Physiology & behavior. 1992;51(6):1277–9. Epub 1992/06/01. doi: 10.1016/0031-9384(92)90321-r 1386466.
50. Isidro RA, Isidro AA, Cruz ML, Hernandez S, Appleyard CB. Double immunofluorescent staining of rat macrophages in formalin-fixed paraffin-embedded tissue using two monoclonal mouse antibodies. Histochemistry and Cell Biology. 2015;144(6):613–21. doi: 10.1007/s00418-015-1364-9 26403093.
51. Gavet O, Pines J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol. 2010;189(2):247–59. doi: 10.1083/jcb.200909144 20404109; PubMed Central PMCID: PMC2856909.
52. Appleyard CB, Alvarez A, Percy WH. Temporal changes in colonic vascular architecture and inflammatory mediator levels in animal models of colitis. Dig Dis Sci. 2002;47(9):2007–14. doi: 10.1023/a:1019660526241 12353846.
53. Appleyard CB, Morales M, Percy WH. Regional variations in neurokinin receptor subtype contributions to muscularis mucosae and epithelial function in rat colon. Dig Dis Sci. 2006;51(3):506–16. doi: 10.1007/s10620-006-3163-6 16614960.
54. Li H, Sheppard DN, Hug MJ. Transepithelial electrical measurements with the Ussing chamber. J Cyst Fibros. 2004;3 Suppl 2:123–6. doi: 10.1016/j.jcf.2004.05.026 15463943.
55. Saria A, Lundberg JM. Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods. 1983;8(1):41–9. doi: 10.1016/0165-0270(83)90050-x 6876872.
56. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD. The blood-brain barrier in neuroinflammatory diseases. Pharmacological reviews. 1997;49:143–55. 9228664.
57. Elices MJ. Neuroinflammatory diseases and the importance of a healthy blood-brain barrier. Current opinion in investigational drugs (London, England: 2000). 2008;9:1149–50. 18951292.
58. Lepe-Zuniga JL, Mansell PW, Hersh EM. Idiopathic production of interleukin-1 in acquired immune deficiency syndrome. Journal of clinical microbiology. 1987;25:1695–700. 3498739.
59. Machowska A, Brzozowski T, Sliwowski Z, Pawlik M, Konturek PC, Pajdo R, et al. Gastric secretion, proinflammatory cytokines and epidermal growth factor (EGF) in the delayed healing of lingual and gastric ulcerations by testosterone. Inflammopharmacology. 2008;16(1):40–7. doi: 10.1007/s10787-007-1600-6 18046513.
60. Spindler-Vesel A, Wraber B, Vovk I, Kompan L. Intestinal permeability and cytokine inflammatory response in multiply injured patients. J Interferon Cytokine Res. 2006;26(10):771–6. doi: 10.1089/jir.2006.26.771 17032171.
61. Gasbarrini G, Montalto M. Structure and function of tight junctions. Role in intestinal barrier. Italian journal of gastroenterology and hepatology. 31:481–8. 10575567.
62. Brack-Werner R. Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. Aids. 1999;13(1):1–22. Epub 1999/04/20. doi: 10.1097/00002030-199901140-00003 10207540.
63. Brack-Werner R, Kleinschmidt A, Ludvigsen A, Mellert W, Neumann M, Herrmann R, et al. Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. Aids. 1992;6(3):273–85. Epub 1992/03/01. 1373627.
64. Acheampong EA, Parveen Z, Muthoga LW, Kalayeh M, Mukhtar M, Pomerantz RJ. Human Immunodeficiency virus type 1 Nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. J Virol. 2005;79(7):4257–69. doi: 10.1128/JVI.79.7.4257-4269.2005 15767427
65. Sporer B, Koedel U, Paul R, Kohleisen B, Erfle V, Fontana A, et al. Human immunodeficiency virus type-1 Nef protein induces blood-brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol. 2000;102(2):125–30. doi: 10.1016/s0165-5728(99)00170-8 10636480
66. Van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, et al. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology. 2004;329(2):302–18. doi: 10.1016/j.virol.2004.08.024 15518810
67. Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, et al. HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain, behavior, and immunity. 2014;40:74–84. doi: 10.1016/j.bbi.2014.02.016 24607605
68. Mordelet E, Kissa K, Cressant A, Gray F, Ozden S, Vidal C, et al. Histopathological and cognitive defects induced by Nef in the brain. Faseb J. 2004;18(15):1851–61. doi: 10.1096/fj.04-2308com 15576488
69. Lamers SL, Fogel GB, Liu ES, Barbier AE, Rodriguez CW, Singer EJ, et al. Brain-specific HIV Nef identified in multiple patients with neurological disease. Journal of neurovirology. 2018;24(1):1–15. Epub 2017/10/25. doi: 10.1007/s13365-017-0586-0 29063512; PubMed Central PMCID: PMC5792318.
70. Lamers SL, Poon AFY, McGrath MS. HIV-1 Nef Protein Structures Associated with Brain Infection and Dementia Pathogenesis. PLoS ONE. 2011;6(2):e16659. doi: 10.1371/journal.pone.0016659 21347424
71. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Annals of neurology. 2009;66:253–8. doi: 10.1002/ana.21697 19743454.
72. Conant K, Tornatore C, Atwood W, Meyers K, Traub R, Major EO. In vivo and in vitro infection of the astrocyte by HIV-1. Advances in neuroimmunology. 1994;4:287–9. doi: 10.1016/s0960-5428(06)80269-x 7874397.
73. Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, et al. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. AIDS (London, England). 1995;9:1001–8. doi: 10.1097/00002030-199509000-00004 8527071.
74. Torres-Muñoz J, Stockton P, Tacoronte N, Roberts B, Maronpot RR, Petito CK. Detection of HIV-1 gene sequences in hippocampal neurons isolated from postmortem AIDS brains by laser capture microdissection. Journal of neuropathology and experimental neurology. 2001;60:885–92. doi: 10.1093/jnen/60.9.885 11556545.
75. Speth C, Schabetsberger T, Mohsenipour I, Stöckl G, Würzner R, Stoiber H, et al. Mechanism of human immunodeficiency virus-induced complement expression in astrocytes and neurons. Journal of virology. 2002;76:3179–88. doi: 10.1128/JVI.76.7.3179-3188.2002 11884542.
76. Trillo-Pazos G, McFarlane-Abdulla E, Campbell IC, Pilkington GJ, Everall IP. Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain research. 2000;864:315–26. doi: 10.1016/s0006-8993(00)02213-7 10802040.
77. Werner T, Ferroni S, Saermark T, Brack-Werner R, Banati RB, Mager R, et al. HIV-1 Nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels. AIDS (London, England). 1991;5:1301–8. doi: 10.1097/00002030-199111000-00003 1768378.
78. Almodovar S, Hsue PY, Morelli J, Huang L, Flores SC. Pathogenesis of HIV-associated pulmonary hypertension: potential role of HIV-1 Nef. Proceedings of the American Thoracic Society. 2011;8:308–12. doi: 10.1513/pats.201006-046WR 21653533.
79. Marecki JC, Cool CD, Parr JE, Beckey VE, Luciw PA, Tarantal AF, et al. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. American journal of respiratory and critical care medicine. 2006;174:437–45. doi: 10.1164/rccm.200601-005OC 16728715.
80. Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodóvar S, Tuder RM, et al. Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. American journal of physiology Lung cellular and molecular physiology. 2009;297:L729–37. doi: 10.1152/ajplung.00087.2009 19648286.
81. Quaranta MG, Vincentini O, Felli C, Spadaro F, Silano M, Moricoli D, et al. Exogenous HIV-1 Nef Upsets the IFN-γ-Induced Impairment of Human Intestinal Epithelial Integrity. PLoS ONE. 2011;6(8):e23442. doi: 10.1371/journal.pone.0023442 21858117
82. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. The Journal of experimental medicine. 2004;200:749–59. doi: 10.1084/jem.20040874 15365096.
83. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. The Journal of experimental medicine. 2004;200:761–70. doi: 10.1084/jem.20041196 15365095.
84. Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, et al. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. Journal of virology. 2008;82:538–45. doi: 10.1128/JVI.01449-07 17959677.
85. Swingler S, Mann A, Jacqué J, Brichacek B, Sasseville VG, Williams K, et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature medicine. 1999;5:997–103. doi: 10.1038/12433 10470075.
86. Vérollet C, Souriant S, Bonnaud E, Jolicoeur P, Raynaud-Messina B, Kinnaer C, et al. HIV-1 reprograms the migration of macrophages. Blood. 2015;125:1611–22. doi: 10.1182/blood-2014-08-596775 25527710.
87. Choe EY, Schoenberger ES, Groopman JE, Park I-W. HIV Nef inhibits T cell migration. The Journal of biological chemistry. 2002;277:46079–84. doi: 10.1074/jbc.M204698200 12354773.
88. Nobile C, Rudnicka D, Hasan M, Aulner N, Porrot F, Machu C, et al. HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. Journal of virology. 2010;84:2282–93. doi: 10.1128/JVI.02230-09 20015995.
89. Park I-W, He JJ. HIV-1 Nef-mediated inhibition of T cell migration and its molecular determinants. Journal of leukocyte biology. 2009;86:1171–8. doi: 10.1189/jlb.0409261 19641037.
90. Kotler DP, Gaetz HP, Lange M, Klein EB, Holt PR. Enteropathy associated with the acquired immunodeficiency syndrome. Annals of internal medicine. 1984;101:421–8. doi: 10.7326/0003-4819-101-4-421 6476631.
91. Kotler DP, Shimada T, Snow G, Winson G, Chen W, Zhao M, et al. Effect of combination antiretroviral therapy upon rectal mucosal HIV RNA burden and mononuclear cell apoptosis. AIDS (London, England). 1998;12:597–604. doi: 10.1097/00002030-199806000-00008 9583599.
92. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C. Cytokine signals propagate through the brain. Molecular psychiatry. 2000;5:604–15. doi: 10.1038/sj.mp.4000813 11126391.
93. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P. Interleukin-1beta -induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2000;20:8153–9. doi: 10.1523/JNEUROSCI.20-21-08153.2000 11050138.
94. Oliveira SHP, Canetti C, Ribeiro RA, Cunha FQ. Neutrophil migration induced by IL-1beta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells. Inflammation. 2008;31:36–46. doi: 10.1007/s10753-007-9047-x 17874178.
95. Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, et al. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell Rep. 2017;18(6):1473–83. Epub 2017/02/09. doi: 10.1016/j.celrep.2017.01.027 28178524; PubMed Central PMCID: PMC5316642.
96. Guan-Han L, Lisa H, Avindra N. Astrocytes as an HIV Reservoir: Mechanism of HIV Infection. Current HIV Research. 2016;14(5):373–81. doi: 10.2174/1570162x14666161006121455 27719663
97. Hoxie JA, LaBranche CC, Endres MJ, Turner JD, Berson JF, Doms RW, et al. CD4-independent utilization of the CXCR4 chemokine receptor by HIV-1 and HIV-2. Journal of reproductive immunology. 1998;41(1–2):197–211. Epub 1999/04/23. doi: 10.1016/s0165-0378(98)00059-x 10213311.
98. Liu Y, Liu H, Kim BO, Gattone VH, Li J, Nath A, et al. CD4-Independent Infection of Astrocytes by Human Immunodeficiency Virus Type 1: Requirement for the Human Mannose Receptor. J Virol. 2004;78(8):4120–33. doi: 10.1128/JVI.78.8.4120-4133.2004 15047828
99. Gray LR, Roche M, Flynn JK, Wesselingh SL, Gorry PR, Churchill MJ. Is the central nervous system a reservoir of HIV-1? Current opinion in HIV and AIDS. 2014;9(6):552–8. Epub 2014/09/10. doi: 10.1097/COH.0000000000000108 25203642; PubMed Central PMCID: PMC4215931.
100. Eugenin EA, Berman JW. Gap Junctions Mediate Human Immunodeficiency Virus-Bystander Killing in Astrocytes. J Neurosci. 2007;27(47):12844–50. doi: 10.1523/JNEUROSCI.4154-07.2007 18032656
101. Ton H, Xiong H. Astrocyte Dysfunctions and HIV-1 Neurotoxicity. Journal of AIDS & clinical research. 2013;4(11):255. Epub 2014/03/04. doi: 10.4172/2155-6113.1000255 24587966; PubMed Central PMCID: PMC3938291.
102. Mediouni S, Marcondes MC, Miller C, McLaughlin JP, Valente ST. The cross-talk of HIV-1 Tat and methamphetamine in HIV-associated neurocognitive disorders. Frontiers in microbiology. 2015;6:1164. Epub 2015/11/12. doi: 10.3389/fmicb.2015.01164 26557111; PubMed Central PMCID: PMC4615951.
103. Liu X, Kumar A. Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes. Scientific reports. 2015;5:9867. Epub 2015/06/16. doi: 10.1038/srep09867 26075907; PubMed Central PMCID: PMC4467202.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF