One-year follow-up of changes in refraction and aberrations induced by corneal incision
Autoři:
Eloy A. Villegas aff001; Encarna Alcón aff001; Elena Rubio aff002; José María Marín aff002; Pablo Artal aff001
Působiště autorů:
Laboratorio de Óptica, Universidad de Murcia, Murcia, Spain
aff001; Servicio de Oftalmología, Hospital Virgen de la Arrixaca, Murcia, Spain
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224823
Souhrn
Purpose
To evaluate the surgically induced changes in refraction (sphere and astigmatism) and higher order aberrations by corneal incision for one year.
Setting
University Hospital “Virgen de la Arrixaca”, Murcia, Spain.
Design
Retrospective interventional case series.
Methods
Corneal power, astigmatism and higher order aberrations (HOA) were calculated from corneal topography measured in 27 eyes prior to surgery and at 2 weeks, 1, 2, 3 and 6 months and 1 year following cataract surgery with 3.2-mm corneal incision. At every stage, optical changes were calculated as the difference between pre- and post-surgery data (in each follow-up) using the formulas of obliquely crossed cylinders for the refraction and Zernikes coefficients for HOA.
Results
At 2 weeks after surgery the mean corneal values of induced sphere, cylinder and the root mean square (RMS) of HOA were +0.54±0.27 D, -0.77±0.32 D and 0.15 microns respectively. These parameters decreased significantly (p-values between 0 and 0.01) at 3 months to +0.33±0.27 D sphere, -0.50±0.24 D cylinder and 0.10±0.05 microns HOA and were stable at the next follow-ups. Induced spherical equivalent was around zero at all visits. The changes in HOA were mainly due to trefoil aberration.
Conclusions
Linear corneal incisions do not change the spherical power but can induce significant values of astigmatism and trefoil aberration in the cornea. However, these changes revert fully or partially to preoperative values by the third month after surgery and remain stable with time.
Klíčová slova:
Cataract surgery – Cornea – Eyes – Intraocular lens implantation – Ophthalmic procedures – Optical equipment – Refractive surgery – Surgical and invasive medical procedures
Zdroje
1. Dick B, Jacobi KW. Comparison of the induced astigmatism after temporal clear corneal tunnel incisions of different sizes. J Cataract Refract Surg. 1995; 21: 417–24. doi: 10.1016/s0886-3350(13)80532-9 8523286
2. Kohnen S, Neuber R, Kohnen T. Effect of temporal and nasal unsutured limbal tunnel incisions on induced astigmatism after phacoemulsification. J Cataract Refract Surg. 2002; 28: 821–5. doi: 10.1016/s0886-3350(01)01215-9 11978462
3. Nikose AS, Saha D, Laddha PM, Patil M. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison. Clin Ophthalmol. 2018; 12: 65–70. doi: 10.2147/OPTH.S149709 29379266
4. Jauhari N, Chopra D, Chaurasia RK, Agarwal A. Comparison of surgically induced astigmatism in various incisions in manual small incision cataract surgery. Int J Ophthalmol. 2014; 7: 1001–4. doi: 10.3980/j.issn.2222-3959.2014.06.16 25540754
5. Fabian E. Injector systems for foldable intraocular lens implantation. Dev Ophthalmol. 2002; 34: 147–54. doi: 10.1159/000060794 12520611
6. Bohac M, Anticic M, Draca N, Kozomara B, Dekaris I, Gabric N, et al. Comparison of Verisyse and Veriflex Phakic Intraocular Lenses for Treatment of Moderate to High Myopia 36 Months after Surgery. Semin Ophthalmol. 2017; 32: 725–733. doi: 10.3109/08820538.2016.1170163 27487324
7. Masket S, Wang L, Belani S. Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions. J Refract Surg. 2009; 25: 21–4. doi: 10.3928/1081597X-20090101-04 19244949
8. Gills JP, Sanders DR. Use of small incisions to control induced astigmatism and inflammation following cataract surgery. J Cataract Refract Surg. 1991;17 Suppl:740–4.
9. Pfleger T, Skorpik C, Menapace R, Scholz U, Weghaupt H, Zehetmayer M. Long-term course of induced astigmatism after clear corneal incision cataract surgery. J Cataract Refract Surg. 1996; 22: 72–7. doi: 10.1016/s0886-3350(96)80273-2 8656367
10. Zhu S, Qu N, Wang W, Zhu Y, Shentu X, Chen P, et al. Morphologic features and surgically induced astigmatism of femtosecond laser versus manual clear corneal incisions. J Cataract Refract Surg. 2017; 43: 1430–1435. doi: 10.1016/j.jcrs.2017.08.011 29223232
11. Kim H, Whang WJ, Joo CK. Corneal Astigmatism in Patients After Cataract Surgery: A 10-Year Follow-up Study. J Refract Surg. 2016; 32: 404–9. doi: 10.3928/1081597X-20160303-01 27304604
12. Diakonis VF, Yesilirmak N, Cabot F, Kankariya VP, Kounis GA, Warren D, et al. Comparison of surgically induced astigmatism between femtosecond laser and manual clear corneal incisions for cataract surgery. J Cataract Refract Surg. 2015; 41: 2075–80. doi: 10.1016/j.jcrs.2015.11.004 26703282
13. Nagy ZZ, Dunai A, Kránitz K, Takács AI, Sándor GL, Hécz R, et al. Evaluation of femtosecond laser-assisted and manual clear corneal incisions and their effect on surgically induced astigmatism and higher-order aberrations. J Refract Surg. 2014; 30: 522–5. doi: 10.3928/1081597X-20140711-04 25325892
14. Lim R, Borasio E, Ilari L. Long-term stability of keratometric astigmatism after limbal relaxing incisions. J Cataract Refract Surg. 2014; 40: 1676–81. doi: 10.1016/j.jcrs.2014.01.045 25155388
15. Guirao A, Tejedor J, Artal P. Corneal aberrations before and after small-incision cataract surgery. Invest Ophthalmol Vis Sci. 2004; 45: 4312–9. doi: 10.1167/iovs.04-0693 15557437
16. Park YM, Choi BJ, Lee JS. Effect of incision types for Artisan phakic intraocular lens implantation on ocular higher order aberrations. Int J Ophthalmol. 2016; 9: 1785–1789. doi: 10.18240/ijo.2016.12.14 28003980
17. Jiang Y, Le Q, Yang J, Lu Y. Changes in corneal astigmatism and high order aberrations after clear corneal tunnel phacoemulsification guided by corneal topography. J Refract Surg. 2006; 22: S1083–8. 17444098
18. Marcos S, Rosales P, Llorente L, Jiménez-Alfaro I. Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses. J Cataract Refract Surg. 2007; 33: 217–26. doi: 10.1016/j.jcrs.2006.10.021 17276261
19. Yao K, Tang X, Ye P. Corneal astigmatism, high order aberrations, and optical quality after cataract surgery: microincision versus small incision. J Refract Surg. 2006; 22: S1079–82. 17444097
20. Tong N, He JC, Lu F, Wang Q, Qu J, Zhao YE. Changes in corneal wavefront aberrations in microincision and small-incision cataract surgery. J Cataract Refract Surg. 2008; 34: 2085–90. doi: 10.1016/j.jcrs.2008.08.020 19027564
21. Guirao A, Artal P. Corneal wave aberration from videokeratography: accuracy and limitations of the procedure. J Opt Soc Am A Opt Image Sci Vis 2000; 17: 955–965. doi: 10.1364/josaa.17.000955 10850465
22. Artal P. Combining corneal and ocular wave-aberrations. In: Krueger RR, Applegate RA, MacRae S, eds, Wavefront Customized Visual Correction; The Quest for Super Vision II. Thorofare, NJ, Slack, 2004; 311–316.
23. Atchison DA, Suheimat M, Mathur A, Lister LJ, Rozema. Anterior corneal, posterior corneal and lenticular contributions to ocular aberrations. Invest Ophthalmol Vis Sci. 2016; 57: 5263–5270. doi: 10.1167/iovs.16-20067 27701637
24. Klijn S, van der Sommen CM, Sicam VA, Reus NJ. Value of posterior keratometry in the assessment of surgically induced astigmatic change in cataract surgery. Acta Ophthalmol. 2016; 94: 494–8. doi: 10.1111/aos.13003 27011060
25. Jin C, Chen X, Law A, Kang Y, Wang X, Xu W, et al. Different-sized incisions for phacoemulsification in age-related cataract. Cochrane Database Syst Rev 2017; 20: CD010510.
26. Kamiya K, Shimizu K, Igarashi A, Kitazawa Y, Kojima T, Nakamura T, et al. Posterior chamber phakic intraocular lens implantation: comparative, multicentre study in 351 eyes with low-to-moderate or high myopia. Br J Ophthalmol 2018; 102: 177–181. doi: 10.1136/bjophthalmol-2017-310164 28611132
27. Baharozian CJ, Song C, Hatch KM, Talamo JH. A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery. Clin Ophthalmol 2017; 13: 1841–1848.
28. Kaufmann C, Peter J, Ooi K, Phipps S, Cooper P, Goggin M. Limbal relaxing incisions versus on-axis incisions to reduce corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg 2005; 31: 2261–5. doi: 10.1016/j.jcrs.2005.08.046 16473215
29. Artal P, Chen L, Fernández EJ, Singer B, Manzanera S, Williams DR. Neural adaptation for the eye's optical aberrations. J Vis 2004; 4: 281–287. doi: 10.1167/4.4.4 15134475
30. Chen L., Artal P., Hartnell D. G., Williams D. R. Neural compensation for the best aberration correction. J Vis 2007; 7: 1–9.
31. Villegas EA, Alcón E, Artal P. Optical quality of the eye in subjects with normal and excellent visual acuity. Invest Ophthalmol Vis Sci. 2008; 49: 4688–96. doi: 10.1167/iovs.08-2316 18552387
32. Villegas EA, Alcón E, Artal P. Minimum amount of astigmatism that should be corrected. J Cataract Refract Surg 2014; 40: 13–9. doi: 10.1016/j.jcrs.2013.09.010 24355718
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy