Intramolecular tautomerization of the quercetin molecule due to the proton transfer: QM computational study
Autoři:
Ol’ha O. Brovarets’ aff001; Dmytro M. Hovorun aff001
Působiště autorů:
Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
aff001; Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224762
Souhrn
Quercetin molecule (3, 3′, 4′, 5, 7-pentahydroxyflavone, C15H10O7) is an important flavonoid compound of natural origin, consisting of two aromatic A and B rings linked through the C ring with endocyclic oxygen atom and five hydroxyl groups attached to the 3, 3′, 4′, 5 and 7 positions. This molecule is found in many foods and plants, and is known to have a wide range of therapeutic properties, like an anti-oxidant, anti-toxic, anti-inflammatory etc. In this study for the first time we have revealed and investigated the pathways of the tautomeric transformations for the most stable conformers of the isolated quercetin molecule (Brovarets’ & Hovorun, 2019) via the intramolecular proton transfer. Energetic, structural, dynamical and polar characteristics of these transitions, in particular relative Gibbs free and electronic energies, characteristics of the intramolecular specific interactions–H-bonds and attractive van der Waals contacts, have been analysed in details. It was demonstrated that the most probable process among all investigated is the proton transfer from the O3H hydroxyl group of the C ring to the C2′ carbon atom of the C2′H group of the B ring along the intramolecular O3H…C2′ H-bond with the further formation of the C2′H2 group. It was established that the proton transfer from the hydroxyl groups to the carbon atoms of the neighboring CH groups is assisted at the transition states by the strong intramolecular HCH…O H-bond (~28.5 kcal∙mol-1). The least probable path of the proton transfer–from the C8H group to the endocyclic O1 oxygen atom–causes the decyclization of the C ring in some cases. It is shortly discussed the biological importance of the obtained results.
Klíčová slova:
Dipole moments – Oxygen – Protons – Transition state – Atoms – Carbon – Gibbs free energy – Electron density
Zdroje
1. Vermerris W., Nicholson R. Phenolic compound biochemistry. Dordrecht: Springer, 2006, 275 p.
2. Andersen M., Markham K.R. Flavonoids: chemistry, biochemistry, and applications. New York: CRC Press, 2006, 1197 p.
3. Sharma A., Kashyap D., Sak K., Tuli H.S., Sharma A.K. Therapeutic charm of quercetin and its derivatives: a review of research and patents. Pharm. Pat. Anal., 2018, 7, 15–32. doi: 10.4155/ppa-2017-0030 29227203
4. Li Y., Yao J., Han Ch, Yang J., Chaudhry M.T., Wang Sh., Liu H., Yin Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8, 167. doi: 10.3390/nu8030167 26999194
5. Amić D., Stepanić V., Lučić B., Marković Z., Dimitrić Marković J.M. PM6 study of free radical scavenging mechanisms of flavonoids: why does O-H bond dissociation enthalpy effectively represent free radical scavenging activity? J. Mol. Model., 2013, 19, 2593–603. doi: 10.1007/s00894-013-1800-5 23479282
6. Marković Z.S., Marković J.M.D., Doličanin Ć.B. Mechanistic pathways for the reaction of quercetin with hydroperoxy radical. Theor. Chem. Acc., 2010, 127, 69–80.
7. Marković Z., Amić D., Milenković D., Dimitrić-Marković J.M., Marković S. Examination of the chemical behavior of the quercetin radical cation towards some bases. Phys. Chem. Chem. Phys., 2013, 15, 7370–7378. doi: 10.1039/c3cp44605k 23579253
8. Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-L. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem., 2006, 97, 679–688.
9. Musialik M., Kuzmicz R., Pawlowski T.S., Litwinienko G. Acidity of hydroxyl groups: an overlooked influence on antiradical properties of flavonoids. J. Org. Chem., 2009, 74, 2699–2709. doi: 10.1021/jo802716v 19275193
10. Yang J.-G., Liu B.-G., Liang G.-Zh., Ning Zh.-X. Structure-activity relationship of flavonoids active against hard oiloxidation based on quantum chemical analysis. Molecules, 2009, 14, 46–52.
11. Galano A., Mazzone G., Alvarez-Diduk R., Marino T., Alvarez-Idaboy J. R., Russo N. Food antioxidants: chemical insights at the molecular level. Annu. Rev. Food Sci. Technol., 2016, 7, 335–352. doi: 10.1146/annurev-food-041715-033206 26772412
12. Alvareda E., Denis P.A., Iribarne F., Paulino M. Bond dissociation energies and enthalpies of formation of flavonoids: A G4 and M06-2X investigation. Comp. Theor. Chem., 2016, 1091, 18–23.
13. Vinnarasi S., Radhika R., Vijayakumar S., Shankar R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J. Biomol. Struct. & Dynam., 2019, doi: 10.1080/07391102.2019.1574239 30794082
14. Cao G., Sofic E., Prior R.L. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic. Biol. Med., 1997, 22, 749–760. doi: 10.1016/s0891-5849(96)00351-6 9119242
15. Haenen G.R., Paquay J.B., Korthouwer R.E., Bast A. Peroxynitrite scavenging by flavonoids. Biochem. Biophys. Res. Commun., 1997, 236, 591–593. doi: 10.1006/bbrc.1997.7016 9245694
16. Kerry N., Rice-Evans C. Inhibition of peroxynitrite-mediated oxidation of dopamine by flavonoid and phenolic antioxidants and their structural relationships. J. Neurochem., 1999, 73, 247–253. doi: 10.1046/j.1471-4159.1999.0730247.x 10386977
17. Sekher Pannala A., Chan T.S., O’Brien P.J., Rice-Evans C.A. Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem. Biophys. Res. Commun., 2001, 282, 1161–1168. doi: 10.1006/bbrc.2001.4705 11302737
18. Burda S., Oleszek W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem., 2001, 49, 2774–2779. doi: 10.1021/jf001413m 11409965
19. Cadenas E., Packer L. Handbook of antioxidants (2nd Ed.). New York: Marcel Dekker, 2002.
20. Rong Y., Wang Z., Wu J., Zhao B. A theoretical study on cellular antioxidant activity of selected flavonoids. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, 235–239. doi: 10.1016/j.saa.2012.03.008 22484257
21. Bogdan T.V., Trygubenko S.A., Pylypchuck L.B., Potyahaylo A.L., Samijlenko S.P., Hovorun D.M. Conformational analysis of the quercetin molecule. Scientific Notes of NaUKMA, 2001, 19, 456–460.
22. Olejniczak S., Potrzebowski M.J. Solid state NMR studies and density functional theory (DFT) calculations of conformers of quercetin. Org. Biomol. Chem., 2004, 2, 2315–2322. doi: 10.1039/b406861k 15305212
23. Modelli A., Pshenichnyuk S.A. Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways. Phys. Chem. Chem. Phys., 2013, 15, 1588–1600. doi: 10.1039/c2cp43379f 23243660
24. Protsenko I. O., Bulavin L.A., Hovorun D.M. Investigation of structural properties of quercetin by quantum chemistry methods. WDS'10 Proceedings of Contributed Papers, 2010, Part III, 51–54.
25. Protsenko I.O., Hovorun D.M. Conformational properties of quercetin: quantum chemistry investigation. Repts. Natl. Acad. Sci. Ukr., 2014, N3, 153–157.
26. Brovarets’ O.O., Hovorun D.M. Conformational diversity of the quercetin molecule: A quantum-chemical view. J. Biomol. Struct. & Dynam., 2019, doi: 10.1080/07391102.2019.1656671 31423904
27. Brovarets’, O.O., Hovorun, D.M. Conformational mobility of the quercetin molecule caused by the rotations of the O7H, O5H and O3H hydroxyl groups: in silico scrupulous study. (submitted).
28. Antonczak S. Electronic description of four flavonoids revisited by DFT method. J. Mol. Struct. (THEOCHEM). 2008, 856, 38–45.
29. Vasilescu D., Girma R. Quantum molecular modeling of quercetin–simulation of the interaction with the free radical t‐BuOO. Int. J. Quantum Chem., 2002, 90, 888–902.
30. Leopoldini M., Marino T., Russo N., Toscano M. Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theor. Chem. Acc, 2004, 111, 210–216.
31. Brovarets’ O.O., Hovorun D.M. Conformational transitions of the quercetin molecule via the rotations of its rings: A comprehensive theoretical study. J. Biomol. Struct. & Dynam., 2019, doi: 10.1080/07391102.2019.1645734 31315531
32. Brovarets’ O.O., Hovorun D.M. A new era of the prototropic tautomerism of the quercetin molecule: A QM/QTAIM computational advances. J. Biomol. Struct. & Dynam., 2019.
33. Brovarets’, O.O., Protsenko, I.O., Hovorun, D.M. Comprehensive analysis of the potential energy surface of the quercetin molecule. Abstracts of the conference: "Bioheterocycles 2019, XVIII International Conference on Heterocycles in Bioorganic Chemistry" (www.bioheterocycles2019.eu; Ghent, Belgium, June 17–20, 2019), P. 84.
34. Grytsenko O.M., Pylypchuck L.B., Bogdan T.V., Trygubenko S.A., Hovorun D.M., Maksutina N.P. Keto-enol prototropic tautomerism of quercetin molecule: quantum-chemical calculations. Farmats. Zhurn., 2003, N5, 62–65.
35. Grytsenko O.M., Degtyarev L.S., Pilipchuck L.B. Physical-chemistry properties and electronic structure of quercetin. Farmats. Zhurn., 1992, N2, 34–38.
36. Nikitenko N.G., Shestakov A.F. H-D exchange between quercetin and solvent in the presence of AuI chloride complexes with DMSO: quantum chemical modeling. Russ. Chem. Bull., Int. Ed., 2018, 67, 1794–1802.
37. Trouillas P., Marsal P., Siri D., Lazzaroni R., Duroux J.-C. A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: The specificity of the 3-OH site. Food Chem., 2006, 97, 679–688.
38. Yang Y., Zhao J., Li Y. Theoretical study of the ESIPT process for a new natural product quercetin. Sci. Repts., 2016, 6, 32152.
39. Antonov L. Tautomerism: introduction, history, and recent developments in experimental and theoretical methods. Tautomerism: methods and theories. Weinheim: Wiley-VCH; 2013.
40. Antonov L. Tautomerism: A historical perspective. Tautomerism: concepts and applications in science and technology. Weinheim: WILEY-VCH, 2016.
41. Markova N., Enchev V. Tautomerism of inosine in water: is it possible? J. Phys. Chem. B, 2019, 123, 3, 622–630. doi: 10.1021/acs.jpcb.8b11316 30604973
42. Katritzky A.R., Hall C.D., El-Gendy B.E.M., Draghici B. Tautomerism in drug discovery. J. Comput. Aided Mol. Des., 2010, 24, 475–484. doi: 10.1007/s10822-010-9359-z 20490619
43. Martin Y.C. Let's not forget tautomers. J. Comput. Aided Mol. Des., 2009, 23, 693–704. doi: 10.1007/s10822-009-9303-2 19842045
44. Taylor P.J., der Zwan G.V., Antonov L. 1st Chapter: Tautomerism: introduction, history, and recent developments in experimental and theoretical methods. In book: Tautomerism: methods and theories edition. Publisher: Wiley-VCH, 2014. Editors: Antonov L., doi: 10.1002/9783527658824.ch1
45. Bax B., Chung C.W., Edge C. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry. Acta Crystallogr. Section D Struct. Biol., 2017, D73, 131–140.
46. Tolosa S., Sánchez J.P., Sansón J.A., Hidalgo A. Steered molecular dynamic simulations of the tautomeric equilibria in solution of DNA bases. J. Mol. Liq., 2017, 237, 81–88.
47. Tolosa S., Sansón J.A., Hidalgo A. Mechanisms for guanine–cytosine tautomeric equilibrium in solution via steered molecular dynamic simulations. J. Mol. Liq., 2018, 251, 308–316.
48. Florián J., Leszczyński J. Spontaneous DNA mutations induced by proton transfer in the guanine∙cytosine base pairs: an energetic perspective. J. Am. Chem. Soc., 1996, 118, 3010−3017.
49. Florián J., Hrouda V., Hobza P. Proton transfer in the adenine−thymine base pair. J. Am. Chem. Soc., 1994, 116, 1457− 1460.
50. Florián J., Leszczyński J. Spontaneous DNA mutations induced by proton transfer in the guanine cytosine base pairs: an energetic perspective. J. Am. Chem. Soc., 1996, 118, 3010−3017.
51. Brovarets’ O.O., Hovorun D.M. Can tautomerisation of the A∙T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis. J. Biomol. Struct. & Dynam., 2014, 32, 127–154.
52. Brovarets’ O.O., Hovorun D.M. Why the tautomerization of the G·C Watson–Crick base pair via the DPT does not cause point mutations during DNA replication? QM and QTAIM comprehensive analysis. J. Biomol. Struct. & Dynam., 2014, 32, 1474–1499.
53. Brovarets' O.O., Hovorun D.M. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. J. Comput. Chem., 2013, 34, 2577–2590. doi: 10.1002/jcc.23412 23955922
54. Brovarets' O.O., Zhurakivsky R.O., Hovorun D.M. Is the DPT tautomerisation of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J. Comput. Chem., 2014, 35, 451–466. doi: 10.1002/jcc.23515 24382756
55. Brovarets' O.O., Hovorun D.M. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. J. Biomol. Struct. & Dynam., 2019, 37, 1880–1907.
56. Brovarets’ O. O., Hovorun D. M. Renaissance of the tautomeric hypothesis of the spontaneous point mutations in DNA: new ideas and computational approaches. In: Mitochondrial DNA—New Insights, 2018 (Vol. i, p. 13). InTechOpen: London, 2018. https://doi.org/10.5772/intechopen.77366
57. Brovarets’ O.O., Hovorun D.M. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: An exhaustive quantum-chemical analysis. J. Biomol. Struct. & Dynam., 2013, 31, 913–936.
58. Brovarets' O.O., Zhurakivsky R.O., Hovorun D.M. A QM/QTAIM microstructural analysis of the tautomerisation via the DPT of the hypoxanthine·adenine nucleobase pair. Mol. Phys., 2014, 112, 2005–2016.
59. Masoodi H.R., Bagheri S., Ghaderi Z. The influence of Cu+ binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study. J. Biomol. Struct. & Dynam., 2019, 37, 1923–1934.
60. Brovarets’ O.O., Hovorun D.M. Novel physico-chemical mechanism of the mutagenic action of 5-bromouracil. Ukr. Bioorg. Acta, 2009, 2, 19–23.
61. Brovarets’ O.O., Hovorun D.M. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J. Biomol. Struct. & Dynam., 2019, 37, 2716–2732.
62. Brovarets’ O.O., Pérez-Sánchez H.E., Hovorun D.M. Structural grounds for the 2-aminopurine mutagenicity: A novel insight into the old problem of the replication errors. RSC Adv., 2016, 6, 99546–99557.
63. Brovarets’ O.O., Voiteshenko I.S., Hovorun D.M. Physico-chemical profiles of the wobble↔Watson-Crick G*·2AP(w)↔G·2AP(WC) and A·2AP(w)↔A*·2AP(WC) tautomerisations: A QM/QTAIM comprehensive survey. Phys. Chem. Chem. Phys., 2018, 20, 623–636.
64. Srivastava R. Theoretical studies on the electronic and optoelectronic properties of [A.2AP(w)/A*.2AP(WC)/C.2AP(w)/C*.2AP(WC)/C.A(w)/C*.A(WC)]–Au8 mismatch nucleobase complexes. Mol. Phys., 2018, 116, 263–272.
65. Brovarets’, O.O., Protsenko, I.O., Zaychenko, G. Computational modeling of the tautomeric interconversions of the quercetin molecule. Abstracts of the International Symposium “EFMC-ACSMEDI Medicinal Chemistry Frontiers 2019” (MedChemFrontiers 2019; www.medchemfrontiers.org; June 10–13, 2019; Krakow, Poland), P. 114.
66. Peng C., Ayala P.Y., Schlegel H.B., Frisch M.J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comput. Chem., 1996, 17, 49–56.
67. Tirado-Rives J., Jorgensen W.L. Performance of B3LYP Density Functional Methods for a large set of organic molecules. J. Chem. Theory Comput., 2008, 4, 297–306. doi: 10.1021/ct700248k 26620661
68. Parr R.G., Yang W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press; 1989.
69. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 1988, 37, 785–789.
70. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al. GAUSSIAN 09 (Revision B.01). Wallingford CT: Gaussian Inc; 2010.
71. Brovarets’ O.O., Hovorun D.M. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches. J. Comput. Chem., 2013, 34, 2577–2590. doi: 10.1002/jcc.23412 23955922
72. Brovarets' O.O., Zhurakivsky R.O., Hovorun D.M. Is the DPT tautomerisation of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J. Comput. Chem., 2014, 35, 451–466. doi: 10.1002/jcc.23515 24382756
73. Brovarets’ O.O., Tsiupa K.S., Dinets A., Hovorun D.M. Unexpected routes of the mutagenic tautomerization of the T nucleobase in the classical A·T DNA base pairs: A QM/QTAIM comprehensive view. Front. Chem., 2018, 6, 532; doi: 10.3389/fchem.2018.00532 30538979
74. Brovarets’ O.O., Tsiupa K.S., Hovorun D.M. Non-dissociative structural transitions of the Watson-Crick and reverse Watson-Crick А∙Т DNA base pairs into the Hoogsteen and reverse Hoogsteen forms. Sci. Repts., 2018, 8, 10371.
75. Brovarets’ O.O., Tsiupa K.S., Hovorun D.M. Novel pathway for mutagenic tautomerization of classical А∙Т DNA base pairs via sequential proton transfer through quasi-orthogonal transition states: A QM/QTAIM investigation. PLoS ONE, 2018, 13, e0199044. doi: 10.1371/journal.pone.0199044 29949602
76. Brovarets’ O.O., Tsiupa K.S., Hovorun D.M. Surprising conformers of the biologically important A∙T DNA base pairs: QM/QTAIM proofs. Front. Chem., 2018, 6:8; doi: 10.3389/fchem.2018.00006
77. Brovarets’ O.O., Tsiupa K.S., Hovorun D.M. The A∙T(rWC)/A∙T(H)/A∙T(rH) ↔ A∙T*(rwWC)/A∙T*(wH)/A∙T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. RSC Adv., 2018, 8, 13433–13445.
78. Brovarets’ O.O., Tsiupa K.S., Hovorun D.M. Unexpected A∙T(WC)↔A∙T(rWC)/A∙T(rH) and A∙T(H)↔A∙T(rH)/A∙T(rWC) conformational transitions between the classical A∙T DNA base pairs: A QM/QTAIM comprehensive study. Int. J. Quantum. Chem., 2018, 118, e25674.
79. Palafox M.A. Molecular structure differences between the antiviral nucleoside analogue 5-iodo-2`-deoxyuridine and the natural nucleoside 2`-deoxythymidine using MP2 and DFT methods: conformational analysis, crystal simulations, DNA pairs and possible behavior. J. Biomol. Struct. & Dynam., 2014, 32, 831–851.
80. El-Sayed A.A., Tamara Molina A., Alvarez-Ros M.C., Palafox M.A. Conformational analysis of the anti-HIV Nikavir prodrug: comparisons with AZT and thymidine, and establishment of structure-activity relationships/tendencies in other 6´-derivatives. J. Biomol. Struct. & Dynam. 2015, 33, 723–748.
81. Frisch M.J., Head-Gordon M., Pople J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett., 1990, 166, 281–289.
82. Hariharan P.C., People J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta., 1973, 28, 213−222.
83. Krishnan R., Binkley J.S., Seeger R., People J.A. Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 1980, 72, 650−654.
84. Hratchian H.P., Schlegel H.B. Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces. In Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra C.E., Frenking G., Kim K.S., Scuseria G., Eds.; Elsevier: Amsterdam, 2005; pp 195–249.
85. Atkins P.W. Physical chemistry. Oxford: Oxford University Press, 1998.
86. Wigner E. Über das Überschreiten von Potentialschwellen bei chemischen Reaktionen [Crossing of potential thresholds in chemical reactions]. Zeits. Physik. Chem., 1932, B19, 203−216.
87. Brovarets’ O.O., Hovorun D.M. Atomistic nature of the DPT tautomerisation of the biologically important C·C* DNA base mispair containing amino and imino tautomers of the cytosine: A QM and QTAIM approach. Phys. Chem. Chem. Phys., 2013, 15, 20091–20104. doi: 10.1039/c3cp52644e 24154739
88. Brovarets’ O.O., Hovorun D.M. DPT tautomerisation of the G·Asyn and A*·G*syn DNA mismatches: A QM/QTAIM combined atomistic investigation. Phys. Chem. Chem. Phys., 2014, 16, 9074–9085. doi: 10.1039/c4cp00488d 24695821
89. Keith, T.A. AIMAll (Version 10.07.01); 2010. Retrieved from aim.tkgristmill.com.
90. Matta C.F., Hernández-Trujillo J. Bonding in polycyclic aromatic hydrocarbons in terms of the electron density and of electron delocalization. J. Phys. Chem A, 2003, 107, 7496–7504.
91. Matta C.F., Castillo N., Boyd R.J. Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. J. Chem. Phys., 2006, 125, 204103. doi: 10.1063/1.2378720 17144686
92. Matta C.F. Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. J. Comput. Chem., 2014, 35, 1165–1198. doi: 10.1002/jcc.23608 24777743
93. Bader R.F.W. Atoms in molecules: A quantum theory. Oxfor0064: Oxford University Press; 1990.
94. Espinosa E., Molins E., Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett., 1998, 285, 170–173.
95. Mata I., Alkorta I., Espinosa E., Molins E. Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. Chem. Phys. Lett., 2011, 507, 185–189.
96. Brovarets’ O.O., Yurenko Y.P., Hovorun D.M. Intermolecular CН⋯O/N Н-bonds in the biologically important pairs of natural nucleobases: A thorough quantum-chemical study. J. Biomol. Struct. & Dynam., 2014, 32, 993–1022.
97. Brovarets’ O.O., Yurenko Y.P., Hovorun D.M. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J. Biomol. Struct. & Dynam., 2015, 33, 1624–1652.
98. Afonin A.A., Vashchenko A.V. Benchmark calculations of intramolecular hydrogen bond energy based on molecular tailoring and function-based approaches: Developing hybrid approach. Int. J. Quantum Chem., 119, 2019, e26001.
99. Afonin A.A., Pavlov D.M., Vashchenko A.V. Case study of 2-vinyloxypyridine: Quantitative assessment of the intramolecular CeH/N hydrogen bond energy and its contribution to the one-bond 13Ce1 H coupling constant. J. Mol. Struct., 2019, 1176, 73–85.
100. Nikolaienko T.Y., Bulavin L.A., Hovorun D.M. Bridging QTAIM with vibrational spectroscopy: The energy of intramolecular hydrogen bonds in DNA-related biomolecules. Phys Chem. Chem. Phys., 2012, 14, 7441–7447. doi: 10.1039/c2cp40176b 22514024
101. García-Moreno B.E., Dwyer J.J., Gittis A.G., Lattman E.E., Spencer D.S., Stites W.E. Experimental measurement of the effective dielectric in the hydrophobic core of a protein. Biophys. Chem., 1997, 64, 211–224. doi: 10.1016/s0301-4622(96)02238-7 9127946
102. Bayley S.T. The Dielectric Properties of Various Solid Crystalline Proteins, Amino Acids and Peptides. Trans. Faraday Soc., 1951, 47, 509–517.
103. Dewar M.J.S., Storch D.M. Alternative view of enzyme reactions. Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 2225−2229. doi: 10.1073/pnas.82.8.2225 3857576
104. Mertz E.L., Krishtalik L.I. Low dielectric response in enzyme active site. Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2081–2086. doi: 10.1073/pnas.050316997 10681440
105. Petrushka J., Sowers L.C., Goodman M. Comparison of nucleotide interactions in water, proteins, and vacuum: model for DNA polymerase fidelity. Proc. Natl. Acad. Sci. U. S. A., 1986, 83, 1559–1562. doi: 10.1073/pnas.83.6.1559 3456600
106. Samoilova A.N., Minenko S.S., Sushynskyi O.Ye., Lisetski L.N., Lebovka N.I. Optical and calorimetric studies of quercetin-doped liquid crystals: Effects of molecular aggregation. J. Mol. Liq., 2019, doi: 10.1016/j.molliq.2018.11.050
107. Valters R.E. Ring-chain tautomerism. Plenum Press: New York, 1985.
108. Sigalov M.V. Ring-chain tautomerism with participation of pyridine nitrogen: The intramolecular cyclization of 2-pyridinecarboxaldehyde–indandione adducts in acidic medium. J. Mol. Struct., 2014, 1074, 302–309.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy