#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effects of neuromuscular electrical stimulation training on muscle size in collegiate track and field athletes


Autoři: Taku Wakahara aff001;  Ayumu Shiraogawa aff001
Působiště autorů: Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan aff001;  Human Performance Laboratory, Waseda University, Tokorozawa, Saitama, Japan aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224881

Souhrn

The purpose of this study was to examine the effects of neuromuscular electrical stimulation training for 12 weeks on the abdominal muscle size in trained athletes. Male collegiate track and field athletes participated in the present study and were randomly allocated to either training or control groups. Eleven participants of the training group completed a 60-session training program over a 12-week period (23 min/session, 5 days/week) involving neuromuscular electrical stimulation (mostly 20 Hz) for the abdominal muscles in addition to their usual training for the own events. The participants of the control group (n = 13) continued their usual training. Before and after the intervention period, cross-sectional areas of the rectus abdominis and abdominal oblique muscles (the internal and external obliques and transversus abdominis) and subcutaneous fat thickness were measured with magnetic resonance and ultrasound imaging. There were no significant changes in cross-sectional area of the rectus abdominis or abdominal oblique muscles or in subcutaneous fat thickness in the training or control groups after the intervention period. The change in cross-sectional area of the rectus abdominis in each participant was not significantly correlated with pre-training cross-sectional area and neither was the mean value of fat thickness at pre- and post-training. These results suggest that low-frequency (20 Hz) neuromuscular electrical stimulation training for 12 weeks is ineffective in inducing hypertrophy of the abdominal muscles in trained athletes, even when they have a thin layer of subcutaneous fat.

Klíčová slova:

Abdominal muscles – Fats – Functional electrical stimulation – Muscle contraction – Muscle fibers – Running – Slow-twitch muscle fibers – Ultrasound imaging


Zdroje

1. Filipovic A, Kleinöder H, Dörmann U, Mester J. Electromyostimulation—a systematic review of the effects of different electromyostimulation methods on selected strength parameters in trained and elite athletes. J Strength Cond Res. 2012;26: 2600–2614. doi: 10.1519/JSC.0b013e31823f2cd1 22067247

2. Maffiuletti N, Pensini M, Martin A. Activation of human plantar flexor muscles increases after electromyostimulation training. J Appl Physiol. 2002;92: 1383–1392. doi: 10.1152/japplphysiol.00884.2001 11896001

3. Gondin J, Duclay J, Martin A. Soleus- and gastrocnemii-evoked V-wave responses increase after neuromuscular electrical stimulation training. J Neurophysiol. 2006;95: 3328–3335. doi: 10.1152/jn.01002.2005 16481458

4. Hortobágyi T, Maffiuletti NA. Neural adaptations to electrical stimulation strength training. Eur J Appl Physiol. 2011;111: 2439–2449. doi: 10.1007/s00421-011-2012-2 21643920

5. Ruther CL, Golden CL, Harris RT, Dudley GA. Hypertrophy, resistance training, and the nature of skeletal muscle activation. J Strength Cond Res. 1995;9: 155–159.

6. Stevenson SW, Dudley GA. Dietary creatine supplementation and muscular adaptation to resistive overload. Med Sci Sports Exerc. 2001;33: 1304–1310. doi: 10.1097/00005768-200108000-00010 11474331

7. Gondin J, Guette M, Ballay Y, Martin A. Electromyostimulation training effects on neural drive and muscle architecture. Med Sci Sports Exerc. 2005;37: 1291–1299. doi: 10.1249/01.mss.0000175090.49048.41 16118574

8. Natsume T, Ozaki H, Kakigi R, Kobayashi H, Naito H. Effects of training intensity in electromyostimulation on human skeletal muscle. Eur J Appl Physiol. 2018;118: 1339–1347. doi: 10.1007/s00421-018-3866-3 29679248

9. Cabric M, Appell HJ, Resic A. Fine structural changes in electrostimulated human skeletal muscle. Evidence for predominant effects on fast muscle fibres. Eur J Appl Physiol Occup Physiol. 1988;57: 1–5. doi: 10.1007/bf00691229 3342785

10. Pérez M, Lucia A, Rivero JL, Serrano AL, Calbet JA, Delgado MA, et al. Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch. 2002;443: 866–874. doi: 10.1007/s00424-001-0769-6 11889587

11. Gondin J, Brocca L, Bellinzona E, D'Antona G, Maffiuletti NA, Miotti D, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol. 2011;110: 433–450. doi: 10.1152/japplphysiol.00914.2010 21127206

12. Singer KP. The influence of unilateral electrical muscle stimulation on motor unit activity patterns in atrophic human quadriceps. Aust J Physiother. 1986;32: 31–37. doi: 10.1016/S0004-9514(14)60641-3 25026319

13. Martin L, Cometti G, Pousson M, Morlon B. Effect of electrical stimulation training on the contractile characteristics of the triceps surae muscle. Eur J Appl Physiol Occup Physiol. 1993;67: 457–461. doi: 10.1007/bf00376463 8299618

14. Eriksson E, Häggmark T, Kiessling KH, Karlsson J. Effect of electrical stimulation on human skeletal muscle. Int J Sports Med. 1981;2: 18–22. doi: 10.1055/s-2008-1034578 7333731

15. Kim CK, Takala TE, Seger J, Karpakka J. Training effects of electrically induced dynamic contractions in human quadriceps muscle. Aviat Space Environ Med. 1995;66: 251–255. 7661836

16. Thériault R, Boulay MR, Thériault G, Simoneau JA. Electrical stimulation-induced changes in performance and fiber type proportion of human knee extensor muscles. Eur J Appl Physiol Occup Physiol. 1996;74: 311–317. doi: 10.1007/bf02226926 8911822

17. Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110: 223–234. doi: 10.1007/s00421-010-1502-y 20473619

18. Filipovic A, Kleinöder H, Dörmann U, Mester J. Electromyostimulation—a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res. 2011;25: 3218–3238. doi: 10.1519/JSC.0b013e318212e3ce 21993042

19. St Pierre D, Taylor AW, Lavoie M, Sellers W, Kots YM. Effects of 2500 Hz sinusoidal current on fibre area and strength of the quadriceps femoris. J Sports Med Phys Fitness. 1986;26: 60–66. 2940419

20. Delitto A, Brown M, Strube MJ, Rose SJ, Lehman RC. Electrical stimulation of quadriceps femoris in an elite weight lifter: a single subject experiment. Int J Sports Med. 1989;10: 187–191. doi: 10.1055/s-2007-1024898 2674035

21. Petrofsky J. The effect of the subcutaneous fat on the transfer of current through skin and into muscle. Med Eng Phys. 2008;30: 1168–1176. doi: 10.1016/j.medengphy.2008.02.009 18400550

22. Schoenfeld B. Factors in maximal hypertrophic development. In: Schoenfeld B. Science and development of muscle hypertrophy. Champaign USA: Human Kinetics; 2016. pp. 105–113.

23. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32: 1125–1129. doi: 10.1097/00005768-200006000-00014 10862540

24. Tanaka NI, Komuro T, Tsunoda N, Aoyama T, Okada M, Kanehisa H. Trunk muscularity in throwers. Int J Sports Med. 2013;34: 56–61. doi: 10.1055/s-0032-1316316 22903318

25. Takai Y, Nakatani M, Akamine T, Shiokawa K, Komori D, Kanehisa H. Effect of core training on trunk flexor musculature in male soccer players. Sports Med Int Open. 2017;1: E147–E154. doi: 10.1055/s-0043-115377 30539100

26. Kubo J, Ohta A, Takahashi H, Kukidome T, Funato K. The development of trunk muscles in male wrestlers assessed by magnetic resonance imaging. J Strength Cond Res. 2007;21: 1251–1254. doi: 10.1519/R-19815.1 18076225

27. Abe T, Kondo M, Kawakami Y, Fukunaga T. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol. 1994;6: 161–170. doi: 10.1002/ajhb.1310060204 28548275

28. Kanehisa H, Miyatani M, Azuma K, Kuno S, Fukunaga T. Influences of age and sex on abdominal muscle and subcutaneous fat thickness. Eur J Appl Physiol. 2004;91: 534–537. doi: 10.1007/s00421-003-1034-9 14735364

29. Tanaka NI, Yamada M, Tanaka Y, Fukunaga T, Nishijima T, Kanehisa H. Difference in abdominal muscularity at the umbilicus level between young and middle-aged men. J Physiol Anthropol. 2007;26: 527–532. 18092508

30. Häkkinen K, Komi PV, Alén M, Kauhanen H. EMG, muscle fibre and force production characteristics during a 1 year training period in elite weight-lifters. Eur J Appl Physiol Occup Physiol. 1987;56: 419–427. doi: 10.1007/bf00417769 3622485

31. Sillen MJ, Franssen FM, Gosker HR, Wouters EF, Spruit MA. Metabolic and structural changes in lower-limb skeletal muscle following neuromuscular electrical stimulation: a systematic review. PLoS One. 2013;8: e69391. doi: 10.1371/journal.pone.0069391 24019860

32. Nishikawa Y, Watanabe K, Kawade S, Takahashi T, Kimura H, Maruyama H, et al. The effect of a portable electrical muscle stimulation device at home on muscle strength and activation patterns in locomotive syndrome patients: A randomized control trial. J Electromyogr Kinesiol. 2019;45: 46–52. doi: 10.1016/j.jelekin.2019.02.007 30802718

33. Alon G, McCombe SA, Koutsantonis S, Stumphauzer LJ, Burgwin KC, Parent MM, et al. Comparison of the effects of electrical stimulation and exercise on abdominal musculature. J Orthop Sports Phys Ther. 1987;8: 567–573. 18797021

34. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78: 976–989. doi: 10.1152/jappl.1995.78.3.976 7775344

35. Putman CT, Xu X, Gillies E, MacLean IM, Bell GJ. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92: 376–384. doi: 10.1007/s00421-004-1104-7 15241691

36. Kikuchi N, Yoshida S, Okuyama M, Nakazato K. The effect of high-intensity interval cycling sprints subsequent to arm-curl exercise on upper-body muscle strength and hypertrophy. J Strength Cond Res. 2016;30: 2318–2323. doi: 10.1519/JSC.0000000000001315 26694501


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#