Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages
Autoři:
James J. Zhu aff001; Palaniappan Ramanathan aff002; Elizabeth A. Bishop aff001; Vivian O’Donnell aff003; Douglas P. Gladue aff001; Manuel V. Borca aff001
Působiště autorů:
USDA-ARS, FADRU, Plum Island Animal Disease Center, Orient, New York, United States of America
aff001; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, United States of America
aff002; USDA-APHIS, Plum Island Animal Disease Center, Orient, New York, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223955
Souhrn
African swine fever (ASF) is a swine disease caused by a large, structurally complex, double-stranded DNA virus, African swine fever virus (ASFV). In domestic pigs, acute infection by highly virulent ASF viruses causes hemorrhagic fever and death. Previous work has suggested that ASFV pathogenesis is primarily mediated by host cytokines produced by infected monocytes and macrophages. To better understand molecular mechanisms mediating virus pathogenesis and immune evasion, we used transcriptome analysis to identify gene expression changes after ASFV infection in ex vivo swine macrophages. Our results suggest that the cytokines of TNF family including FASLG, LTA, LTB, TNF, TNFSF4, TNFSF10, TNFSF13B and TNFSF18 are the major causative cytokine factors in ASF pathogenesis via inducing apoptosis. Other up-regulated proinflammatory cytokines (IL17F and interferons) and down-regulated anti-inflammatory cytokine (IL10) may also significantly contribute to ASF pathogenesis and cause excessive tissue inflammatory responses. The differential expression of genes also indicates that ASFV could evade both the innate and adaptive immune responses by (i) inhibiting MHC Class II antigen processing and presentation, (ii) avoiding CD8+ T effector cells and neutrophil extracellular traps via decreasing expression of neutrophil/CD8+ T effector cell-recruiting chemokines, (iii) suppressing M1 activation of macrophages, (iv) inducing immune suppressive cytokines, and (v) inhibiting the processes of macrophage autophagy and apoptosis. These results provide novel information to further investigate and better understand the mechanism of pathogenesis and immune evasion of this devastating swine disease.
Klíčová slova:
Cytokines – Gene expression – Genetic interference – Immune response – Interferons – Macrophages – Pathogenesis – Swine
Zdroje
1. Malmquist WA, Hay D. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. American journal of veterinary research. 1960;21:104–8. Epub 1960/01/01. 14420403.
2. Wardley RC, Hamilton F, Wilkinson PJ. The replication of virulent and attenuated strains of African swine fever virus in porcine macrophages. Archives of virology. 1979;61(3):217–25. Epub 1979/01/01. doi: 10.1007/bf01318056 496644.
3. Ramiro-Ibanez F, Ortega A, Brun A, Escribano JM, Alonso C. Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. The Journal of general virology. 1996;77 (Pt 9):2209–19. Epub 1996/09/01. doi: 10.1099/0022-1317-77-9-2209 8811021.
4. Whittall JT, Parkhouse RM. Changes in swine macrophage phenotype after infection with African swine fever virus: cytokine production and responsiveness to interferon-gamma and lipopolysaccharide. Immunology. 1997;91(3):444–9. Epub 1997/07/01. doi: 10.1046/j.1365-2567.1997.00272.x 9301535.
5. Gomez del Moral M, Ortuno E, Fernandez-Zapatero P, Alonso F, Alonso C, Ezquerra A, et al. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. Journal of virology. 1999;73(3):2173–80. 9971800.
6. Salguero FJ, Ruiz-Villamor E, Bautista MJ, Sanchez-Cordon PJ, Carrasco L, Gomez-Villamandos JC. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Veterinary immunology and immunopathology. 2002;90(1–2):11–22. Epub 2002/10/31. doi: 10.1016/s0165-2427(02)00225-8 12406651.
7. Salguero FJ, Sanchez-Cordon PJ, Nunez A, Fernandez de Marco M, Gomez-Villamandos JC. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol. 2005;132(4):289–302. Epub 2005/05/17. doi: 10.1016/j.jcpa.2004.11.004 15893987.
8. Gomez-Villamandos JC, Bautista MJ, Carrasco L, Caballero MJ, Hervas J, Villeda CJ, et al. African swine fever virus infection of bone marrow: lesions and pathogenesis. Veterinary pathology. 1997;34(2):97–107. Epub 1997/03/01. doi: 10.1177/030098589703400202 9066076.
9. Wardley RC, Wilkinson PJ. The association of African swine fever virus with blood components of infected pigs. Archives of virology. 1977;55(4):327–34. Epub 1977/01/01. doi: 10.1007/bf01315054 563710.
10. Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus research. 2013;173(1):122–30. Epub 2012/11/10. doi: 10.1016/j.virusres.2012.10.026 23137735.
11. Teijaro JR. Cytokine storms in infectious diseases. Semin Immunopathol. 2017;39(5):501–3. Epub 2017/07/05. doi: 10.1007/s00281-017-0640-2 28674818.
12. Wack A, Openshaw P, O’Garra A. Contribution of cytokines to pathology and protection in virus infection. Current opinion in virology. 2011;1(3):184–95. Epub 2012/03/24. doi: 10.1016/j.coviro.2011.05.015 22440716.
13. Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol. 2017;39(5):551–61. Epub 2017/05/31. doi: 10.1007/s00281-017-0637-x 28555386.
14. Dixon LK, Chapman DA, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res. 2013;173(1):3–14. doi: 10.1016/j.virusres.2012.10.020 23142553.
15. Correia S, Ventura S, Parkhouse RM. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res. 2013;173(1):87–100. doi: 10.1016/j.virusres.2012.10.013 23165138.
16. Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B, Munoz-Moreno R. African swine fever virus-cell interactions: from virus entry to cell survival. Virus research. 2013;173(1):42–57. doi: 10.1016/j.virusres.2012.12.006 23262167.
17. Sanchez EG, Quintas A, Nogal M, Castello A, Revilla Y. African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus research. 2013;173(1):58–75. Epub 2012/11/17. doi: 10.1016/j.virusres.2012.10.025 23154157.
18. Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of virology. 2004;78(4):1858–64. doi: 10.1128/JVI.78.4.1858-1864.2004 14747550.
19. Zhang F, Hopwood P, Abrams CC, Downing A, Murray F, Talbot R, et al. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. Journal of virology. 2006;80(21):10514–21. Epub 2006/10/17. doi: 10.1128/JVI.00485-06 17041222.
20. Jaing C, Rowland RRR, Allen JE, Certoma A, Thissen JB, Bingham J, et al. Gene expression analysis of whole blood RNA from pigs infected with low and high pathogenic African swine fever viruses. Scientific reports. 2017;7(1):10115. Epub 2017/09/02. doi: 10.1038/s41598-017-10186-4 28860602.
21. Zsak L, Lu Z, Kutish GF, Neilan JG, Rock DL. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. Journal of virology. 1996;70(12):8865–71. 8971015.
22. Krug PW, Holinka LG, O’Donnell V, Reese B, Sanford B, Fernandez-Sainz I, et al. The progressive adaptation of a georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of virology. 2015;89(4):2324–32. doi: 10.1128/JVI.03250-14 25505073.
23. Gomez-Villamandos JC, Bautista MJ, Sanchez-Cordon PJ, Carrasco L. Pathology of African swine fever: the role of monocyte-macrophage. Virus research. 2013;173(1):140–9. Epub 2013/02/05. doi: 10.1016/j.virusres.2013.01.017 23376310.
24. Messaoudi I, Basler CF. Immunological features underlying viral hemorrhagic fevers. Curr Opin Immunol. 2015;36:38–46. Epub 2015/07/15. doi: 10.1016/j.coi.2015.06.003 26163194.
25. Croft M, Siegel RM. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat Rev Rheumatol. 2017;13(4):217–33. Epub 2017/03/10. doi: 10.1038/nrrheum.2017.22 28275260.
26. Roe MF, Bloxham DM, White DK, Ross-Russell RI, Tasker RT, O’Donnell DR. Lymphocyte apoptosis in acute respiratory syncytial virus bronchiolitis. Clin Exp Immunol. 2004;137(1):139–45. Epub 2004/06/16. doi: 10.1111/j.1365-2249.2004.02512.x 15196254.
27. Dwivedi P, Greis KD. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol. 2017;46:9–20. Epub 2016/10/30. doi: 10.1016/j.exphem.2016.10.008 27789332.
28. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702. Epub 2014/03/25. doi: 10.1146/annurev-immunol-032713-120145 24655300.
29. Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64(2):477–85. Epub 2013/09/10. doi: 10.1016/j.cyto.2013.07.022 24011563.
30. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–19. Epub 2009/01/16. doi: 10.1016/j.immuni.2008.11.009 19144317.
31. Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC. Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals (Basel). 2010;3(4):994–1015. Epub 2010/07/29. doi: 10.3390/ph3040994 20664817.
32. Chawla-Sarkar M, Lindner DJ, Liu YF, Williams BR, Sen GC, Silverman RH, et al. Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis. 2003;8(3):237–49. Epub 2003/05/27. 12766484.
33. Apelbaum A, Yarden G, Warszawski S, Harari D, Schreiber G. Type I interferons induce apoptosis by balancing cFLIP and caspase-8 independent of death ligands. Mol Cell Biol. 2013;33(4):800–14. Epub 2012/12/12. doi: 10.1128/MCB.01430-12 23230268.
34. Vial T, Descotes J. Clinical toxicity of the interferons. Drug Saf. 1994;10(2):115–50. Epub 1994/02/01. doi: 10.2165/00002018-199410020-00003 7516663.
35. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10(3):170–81. Epub 2010/02/16. doi: 10.1038/nri2711 20154735.
36. Mantovani A, Dinarello CA, Molgora M, Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50(4):778–95. Epub 2019/04/18. doi: 10.1016/j.immuni.2019.03.012 30995499.
37. Borca MV, O’Donnell V, Holinka LG, Ramirez-Medina E, Clark BA, Vuono EA, et al. The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL-1beta. Virus Res. 2018;249:116–23. Epub 2018/04/02. doi: 10.1016/j.virusres.2018.03.017 29605728.
38. Zhao Y, Wu T, Shao S, Shi B, Zhao Y. Phenotype, development, and biological function of myeloid-derived suppressor cells. Oncoimmunology. 2016;5(2):e1004983. Epub 2016/04/09. doi: 10.1080/2162402X.2015.1004983 27057424.
39. Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol. 2015;33:417–43. Epub 2015/04/12. doi: 10.1146/annurev-immunol-032414-112134 25861977.
40. Li Q, Harden JL, Anderson CD, Egilmez NK. Tolerogenic Phenotype of IFN-gamma-Induced IDO+ Dendritic Cells Is Maintained via an Autocrine IDO-Kynurenine/AhR-IDO Loop. J Immunol. 2016;197(3):962–70. Epub 2016/06/19. doi: 10.4049/jimmunol.1502615 27316681.
41. Karalyan Z, Zakaryan H, Arzumanyan H, Sargsyan K, Voskanyan H, Hakobyan L, et al. Pathology of porcine peripheral white blood cells during infection with African swine fever virus. BMC Vet Res. 2012;8:18. Epub 2012/03/01. doi: 10.1186/1746-6148-8-18 22373449.
42. Weber C, Belge KU, von Hundelshausen P, Draude G, Steppich B, Mack M, et al. Differential chemokine receptor expression and function in human monocyte subpopulations. J Leukoc Biol. 2000;67(5):699–704. Epub 2000/05/16. doi: 10.1002/jlb.67.5.699 10811011.
43. Agraz-Cibrian JM, Giraldo DM, Mary FM, Urcuqui-Inchima S. Understanding the molecular mechanisms of NETs and their role in antiviral innate immunity. Virus research. 2017;228:124–33. Epub 2016/12/08. doi: 10.1016/j.virusres.2016.11.033 27923601.
44. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13(3):272–80. Epub 2013/11/06. doi: 10.1016/j.autrev.2013.10.010 24189283.
45. Hickman HD, Reynoso GV, Ngudiankama BF, Cush SS, Gibbs J, Bennink JR, et al. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity. 2015;42(3):524–37. Epub 2015/03/15. doi: 10.1016/j.immuni.2015.02.009 25769612.
46. Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol. 2014;26(3):237–45. Epub 2014/03/22. doi: 10.1016/j.smim.2014.02.009 24647229.
47. Hamidzadeh K, Mosser DM. Purinergic Signaling to Terminate TLR Responses in Macrophages. Front Immunol. 2016;7:74. Epub 2016/03/15. doi: 10.3389/fimmu.2016.00074 26973651.
48. Bohlson SS, O’Conner SD, Hulsebus HJ, Ho MM, Fraser DA. Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol. 2014;5:402. Epub 2014/09/06. doi: 10.3389/fimmu.2014.00402 25191325.
49. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. Epub 2014/10/14. doi: 10.3389/fimmu.2014.00461 25309543.
50. Mills CD. M1 and M2 Macrophages: Oracles of Health and Disease. Crit Rev Immunol. 2012;32(6):463–88. Epub 2013/02/23. 23428224.
51. Hurtado C, Bustos MJ, Granja AG, de Leon P, Sabina P, Lopez-Vinas E, et al. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Archives of virology. 2011;156(2):219–34. doi: 10.1007/s00705-010-0846-2 21069396.
52. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73. Epub 2013/01/10. doi: 10.1146/annurev-immunol-032712-095910 23298205.
53. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9. Epub 1997/11/21. doi: 10.1038/36593 9367155.
54. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16(3):479–92. Epub 2002/03/26. doi: 10.1016/s1074-7613(02)00283-2 11911831.
55. Hamidi T, Cano CE, Grasso D, Garcia MN, Sandi MJ, Calvo EL, et al. NUPR1 works against the metabolic stress-induced autophagy-associated cell death in pancreatic cancer cells. Autophagy. 2013;9(1):95–7. Epub 2012/10/11. doi: 10.4161/auto.22258 23047430.
56. Zhu J, Zhang W, Zhang L, Xu L, Chen X, Zhou S, et al. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice. J Cell Mol Med. 2018;22(7):3353–63. Epub 2018/03/23. doi: 10.1111/jcmm.13610 29566311.
57. Moriyama M, Moriyama H, Uda J, Kubo H, Nakajima Y, Goto A, et al. BNIP3 upregulation via stimulation of ERK and JNK activity is required for the protection of keratinocytes from UVB-induced apoptosis. Cell Death Dis. 2017;8(2):e2576. Epub 2017/02/06. doi: 10.1038/cddis.2017.4 28151469.
58. Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Current molecular medicine. 2012;12(5):634–51. Epub 2012/04/21. doi: 10.2174/156652412800619978 22515981.
59. Munz C. Autophagy Proteins in Viral Exocytosis and Anti-Viral Immune Responses. Viruses. 2017;9(10). Epub 2017/10/05. doi: 10.3390/v9100288 28976939.
60. Chen H, Ning X, Jiang Z. Caspases control antiviral innate immunity. Cell Mol Immunol. 2017;14(9):736–47. Epub 2017/07/12. doi: 10.1038/cmi.2017.44 28690332.
61. Munz C. Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol Rev. 2016;272(1):17–27. Epub 2016/06/21. doi: 10.1111/imr.12422 27319339.
62. Silk RN, Bowick GC, Abrams CC, Dixon LK. African swine fever virus A238L inhibitor of NF-kappaB and of calcineurin phosphatase is imported actively into the nucleus and exported by a CRM1-mediated pathway. The Journal of general virology. 2007;88(Pt 2):411–9. Epub 2007/01/26. doi: 10.1099/vir.0.82358-0 17251557.
63. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–7. Epub 2013/11/14. doi: 10.1016/j.cellsig.2013.11.004 24219909.
64. Juhas U, Ryba-Stanislawowska M, Szargiej P, Mysliwska J. Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online). 2015;69:496–502. Epub 2015/05/20. 25983288.
65. Bahrami S, Drablos F. Gene regulation in the immediate-early response process. Adv Biol Regul. 2016;62:37–49. Epub 2016/05/26. doi: 10.1016/j.jbior.2016.05.001 27220739.
66. Basters A, Knobeloch KP, Fritz G. USP18—a multifunctional component in the interferon response. Bioscience reports. 2018;38(6). Epub 2018/08/22. doi: 10.1042/BSR20180250 30126853.
67. Duncan SA, Baganizi DR, Sahu R, Singh SR, Dennis VA. SOCS Proteins as Regulators of Inflammatory Responses Induced by Bacterial Infections: A Review. Frontiers in microbiology. 2017;8:2431. Epub 2018/01/10. doi: 10.3389/fmicb.2017.02431 29312162.
68. Zheng Q, Hou J, Zhou Y, Yang Y, Xie B, Cao X. Siglec1 suppresses antiviral innate immune response by inducing TBK1 degradation via the ubiquitin ligase TRIM27. Cell Res. 2015;25(10):1121–36. Epub 2015/09/12. doi: 10.1038/cr.2015.108 26358190.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy