UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal
Autoři:
Jalila Chagraoui aff001; Bernhard Lehnertz aff001; Simon Girard aff001; Jean Francois Spinella aff001; Iman Fares aff002; Elisa Tomellini aff001; Nadine Mayotte aff001; Sophie Corneau aff001; Tara MacRae aff001; Laura Simon aff001; Guy Sauvageau aff001
Působiště autorů:
Molecular Genetics of Stem Cells Laboratory, Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
aff001; Department of Molecular, Cell and Developmental Biology, UCLA, LA, United States of America
aff002; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
aff003; Department of Medicine, Faculty of Medicine, University de Montreal, Montreal, QC, Canada
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224900
Souhrn
Elucidation of the molecular cues required to balance adult stem cell self-renewal and differentiation is critical for advancing cellular therapies. Herein, we report that the hematopoietic stem cell (HSC) self-renewal agonist UM171 triggers a balanced pro- and anti-inflammatory/detoxification network that relies on NFKB activation and protein C receptor-dependent ROS detoxification, respectively. We demonstrate that within this network, EPCR serves as a critical protective component as its deletion hypersensitizes primitive hematopoietic cells to pro-inflammatory signals and ROS accumulation resulting in compromised stem cell function. Conversely, abrogation of the pro-inflammatory activity of UM171 through treatment with dexamethasone, cAMP elevating agents or NFkB inhibitors abolishes EPCR upregulation and HSC expansion. Together, these results show that UM171 stimulates ex vivo HSC expansion by establishing a critical balance between key pro- and anti-inflammatory mediators of self-renewal.
Klíčová slova:
Blood cells – Cytokines – Flow cytometry – Gene expression – Inflammation – Nitric oxide – Hematopoietic stem cells – Detoxification
Zdroje
1. Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell. 2009;136(6):1136–47. Epub 2009/03/24. doi: 10.1016/j.cell.2009.01.015 19303855; PubMed Central PMCID: PMC2692708.
2. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447(7147):1007–11. Epub 2007/06/22. doi: 10.1038/nature05883 17581586; PubMed Central PMCID: PMC2775137.
3. Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15(8):511–23. Epub 2015/07/04. doi: 10.1038/nri3859 26139350; PubMed Central PMCID: PMC4606863.
4. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–82. Epub 2014/06/04. doi: 10.1016/j.bbamcr.2014.05.014 24892271.
5. Clapes T, Lefkopoulos S, Trompouki E. Stress and Non-Stress Roles of Inflammatory Signals during HSC Emergence and Maintenance. Front Immunol. 2016;7:487. Epub 2016/11/23. doi: 10.3389/fimmu.2016.00487 27872627; PubMed Central PMCID: PMC5098161.
6. Espin-Palazon R, Stachura DL, Campbell CA, Garcia-Moreno D, Del Cid N, Kim AD, et al. Proinflammatory signaling regulates hematopoietic stem cell emergence. Cell. 2014;159(5):1070–85. Epub 2014/11/25. doi: 10.1016/j.cell.2014.10.031 25416946; PubMed Central PMCID: PMC4243083.
7. Espin-Palazon R, Weijts B, Mulero V, Traver D. Proinflammatory Signals as Fuel for the Fire of Hematopoietic Stem Cell Emergence. Trends Cell Biol. 2018;28(1):58–66. Epub 2017/09/09. doi: 10.1016/j.tcb.2017.08.003 28882414.
8. He Q, Liu F. Unexpected role of inflammatory signaling in hematopoietic stem cell development: its role beyond inflammation. Curr Opin Hematol. 2016;23(1):18–22. Epub 2015/11/12. doi: 10.1097/MOH.0000000000000197 26554888.
9. He Q, Zhang C, Wang L, Zhang P, Ma D, Lv J, et al. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood. 2015;125(7):1098–106. Epub 2014/12/30. doi: 10.1182/blood-2014-09-601542 25540193.
10. Herman AC, Monlish DA, Romine MP, Bhatt ST, Zippel S, Schuettpelz LG. Systemic TLR2 agonist exposure regulates hematopoietic stem cells via cell-autonomous and cell-non-autonomous mechanisms. Blood Cancer J. 2016;6:e437. Epub 2016/06/18. doi: 10.1038/bcj.2016.45 27315114; PubMed Central PMCID: PMC5141360.
11. Kim PG, Canver MC, Rhee C, Ross SJ, Harriss JV, Tu HC, et al. Interferon-alpha signaling promotes embryonic HSC maturation. Blood. 2016;128(2):204–16. Epub 2016/04/21. doi: 10.1182/blood-2016-01-689281 27095787; PubMed Central PMCID: PMC4946201.
12. Li Y, Esain V, Teng L, Xu J, Kwan W, Frost IM, et al. Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes Dev. 2014;28(23):2597–612. Epub 2014/11/15. doi: 10.1101/gad.253302.114 25395663; PubMed Central PMCID: PMC4248291.
13. Matatall KA, Jeong M, Chen S, Sun D, Chen F, Mo Q, et al. Chronic Infection Depletes Hematopoietic Stem Cells through Stress-Induced Terminal Differentiation. Cell Rep. 2016;17(10):2584–95. Epub 2016/12/08. doi: 10.1016/j.celrep.2016.11.031 27926863; PubMed Central PMCID: PMC5161248.
14. Matatall KA, Shen CC, Challen GA, King KY. Type II interferon promotes differentiation of myeloid-biased hematopoietic stem cells. Stem Cells. 2014;32(11):3023–30. Epub 2014/08/01. doi: 10.1002/stem.1799 25078851; PubMed Central PMCID: PMC4198460.
15. Mirantes C, Passegue E, Pietras EM. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res. 2014;329(2):248–54. Epub 2014/08/26. doi: 10.1016/j.yexcr.2014.08.017 25149680; PubMed Central PMCID: PMC4250307.
16. Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18(6):607–18. Epub 2016/04/26. doi: 10.1038/ncb3346 27111842; PubMed Central PMCID: PMC4884136.
17. Sawamiphak S, Kontarakis Z, Stainier DY. Interferon gamma signaling positively regulates hematopoietic stem cell emergence. Dev Cell. 2014;31(5):640–53. Epub 2014/12/10. doi: 10.1016/j.devcel.2014.11.007 25490269; PubMed Central PMCID: PMC4371141.
18. Schuettpelz LG, Link DC. Regulation of hematopoietic stem cell activity by inflammation. Front Immunol. 2013;4:204. Epub 2013/07/25. doi: 10.3389/fimmu.2013.00204 23882270; PubMed Central PMCID: PMC3715736.
19. Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science. 2014;345(6203):1509–12. Epub 2014/09/23. doi: 10.1126/science.1256337 25237102; PubMed Central PMCID: PMC4372335.
20. Esmon CT. Crosstalk between inflammation and thrombosis. Maturitas. 2004;47(4):305–14. Epub 2004/04/06. doi: 10.1016/j.maturitas.2003.10.015 15063484.
21. Iwaki T, Cruz DT, Martin JA, Castellino FJ. A cardioprotective role for the endothelial protein C receptor in lipopolysaccharide-induced endotoxemia in the mouse. Blood. 2005;105(6):2364–71. Epub 2004/11/06. doi: 10.1182/blood-2004-06-2456 15528312.
22. Levi M, van der Poll T. Recombinant human activated protein C: current insights into its mechanism of action. Crit Care. 2007;11 Suppl 5:S3. Epub 2008/02/27. doi: 10.1186/cc6154 18269690; PubMed Central PMCID: PMC2230607.
23. Fares I, Chagraoui J, Lehnertz B, MacRae T, Mayotte N, Tomellini E, et al. EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood. 2017;129(25):3344–51. Epub 2017/04/15. doi: 10.1182/blood-2016-11-750729 28408459.
24. Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci. 2016;1370(1):65–81. doi: 10.1111/nyas.13013 26928241; PubMed Central PMCID: PMC5193365.
25. Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G. Cyclic AMP: a selective modulator of NF-kappaB action. Cellular and molecular life sciences: CMLS. 2011;68(23):3823–41. doi: 10.1007/s00018-011-0757-8 21744067.
26. Zuo L, Shi L, Yan F. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke. Neuroscience letters. 2016;627:205–10. doi: 10.1016/j.neulet.2016.05.066 27250857.
27. Gorbacheva L, Pinelis V, Ishiwata S, Strukova S, Reiser G. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience. 2010;165(4):1138–46. doi: 10.1016/j.neuroscience.2009.11.027 19931359.
28. Guitton C, Cottereau A, Gerard N, Quillard T, Chauveau A, Devalliere J, et al. Protective cross talk between activated protein C and TNF signaling in vascular endothelial cells: implication of EPCR, noncanonical NF-kappaB, and ERK1/2 MAP kinases. American journal of physiology Cell physiology. 2011;300(4):C833–42. doi: 10.1152/ajpcell.00003.2010 21228323.
29. Seol JW, Lee YJ, Jackson CJ, Sambrook PN, Park SY. Activated protein C inhibits bisphosphonate-induced endothelial cell death via the endothelial protein C receptor and nuclear factor-kappaB pathways. International journal of molecular medicine. 2011;27(6):835–40. doi: 10.3892/ijmm.2011.649 21424111.
30. Guo B, Huang X, Cooper S, Broxmeyer HE. Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nat Med. 2017;23(4):424–8. doi: 10.1038/nm.4298 28263313; PubMed Central PMCID: PMC5408457.
31. Zhao Y, Ling F, Wang HC, Sun XH. Chronic TLR signaling impairs the long-term repopulating potential of hematopoietic stem cells of wild type but not Id1 deficient mice. PLoS One. 2013;8(2):e55552. doi: 10.1371/journal.pone.0055552 23383338; PubMed Central PMCID: PMC3562238.
32. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med. 2011;208(2):273–84. doi: 10.1084/jem.20101643 21300914; PubMed Central PMCID: PMC3039863.
33. Talkhoncheh MS, Subramaniam A, Magnusson M, Kumar P, Larsson J, Baudet A. Transient inhibition of NF-kappaB signaling enhances ex vivo propagation of human hematopoietic stem cells. Haematologica. 2018;103(9):1444–50. doi: 10.3324/haematol.2018.188466 29880606; PubMed Central PMCID: PMC6119158.
34. Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, et al. TRAF6 Mediates Basal Activation of NF-kappaB Necessary for Hematopoietic Stem Cell Homeostasis. Cell Rep. 2018;22(5):1250–62. doi: 10.1016/j.celrep.2018.01.013 29386112; PubMed Central PMCID: PMC5971064.
35. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature biotechnology. 2018;36(5):411–20. doi: 10.1038/nbt.4096 29608179.
36. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell. 2018;174(3):716–29 e27. doi: 10.1016/j.cell.2018.05.061 29961576.
37. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016;530(7589):223–7. doi: 10.1038/nature16943 26863982; PubMed Central PMCID: PMC4854608.
38. Gazit R, Mandal PK, Ebina W, Ben-Zvi A, Nombela-Arrieta C, Silberstein LE, et al. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J Exp Med. 2014;211(7):1315–31. doi: 10.1084/jem.20130428 24958848; PubMed Central PMCID: PMC4076584.
39. Zheng S, Papalexi E, Butler A, Stephenson W, Satija R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Molecular systems biology. 2018;14(3):e8041. doi: 10.15252/msb.20178041 29545397; PubMed Central PMCID: PMC5852373.
40. Simon L, Lavallee VP, Bordeleau ME, Krosl J, Baccelli I, Boucher G, et al. Chemogenomic Landscape of RUNX1-mutated AML Reveals Importance of RUNX1 Allele Dosage in Genetics and Glucocorticoid Sensitivity. Clin Cancer Res. 2017;23(22):6969–81. Epub 2017/09/01. doi: 10.1158/1078-0432.CCR-17-1259 28855357.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy