#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Effect of tracheal antimicrobial peptide on the development of Mannheimia haemolytica pneumonia in cattle


Autoři: Ksenia Vulikh aff001;  Laura L. Bassel aff001;  Lauren Sergejewich aff001;  Emily I. Kaufman aff001;  Joanne Hewson aff002;  Janet I. MacInnes aff001;  Saeid Tabatabaei aff001;  Jeff L. Caswell aff001
Působiště autorů: Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada aff001;  Department of Clinical Studies, University of Guelph, Guelph, Ontario, Canada aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225533

Souhrn

Bacterial pneumonia causes significant economic loss to the beef industry and occurs at times of stress and viral infection. Administering antibiotics to at-risk calves is often used to prevent the disease, but alternatives to mass treatment with antibiotics are needed. Tracheal antimicrobial peptide (TAP), a β-defensin naturally produced by bovine airways, has bactericidal activity against the pathogens that cause pneumonia in cattle. However, TAP expression is suppressed by glucocorticoid (stress) and viral infection. We hypothesized that delivering TAP to the respiratory tract would prevent development of pneumonia in calves infected with Mannheimia haemolytica. Clean-catch calves (i.e. obtained prior to contact with the dam) were challenged by aerosol with M. haemolytica, and TAP or water was delivered to the respiratory tract at 0.3, 2 and 6 hours post-infection. TAP treatment did not protect against development of disease. Calves treated with TAP had similar bacterial loads in the nasal cavity and lung compared to calves treated with water. Similarly, TAP treatment did not affect the development of clinical signs, elevated rectal temperatures, or increased levels of blood neutrophils, haptoglobin and fibrinogen that occurred after bacterial challenge. Postmortem gross and histologic lung lesions were also similar in the two groups. To determine why there was a lack of protective effect, we tested the effect of substances in respiratory lining fluid on the bactericidal activity of TAP. Physiologic concentrations of sodium chloride inhibited TAP bactericidal activity in vitro, as did serum at concentrations of 0.62 to 2.5%, but concentrated bronchoalveolar lavage fluid had no consistent effect. These findings suggest that TAP does not have in vivo bactericidal activity against M. haemolytica because of interference by physiological sodium chloride levels and by serum. Thus, administration of TAP may not be effective for prevention of M. haemolytica pneumonia.

Klíčová slova:

Antimicrobials – Euthanasia – Nasal cavity – Pneumonia – Pulmonary imaging – Respiratory infections – Sodium chloride – Veterinary diseases


Zdroje

1. Mitchell GB, Al-Haddawi MH, Clark ME, Beveridge JD, Caswell JL. Effect of corticosteroids and neuropeptides on the expression of defensins in bovine tracheal epithelial cells. Infect Immun. 2007;75: 1325–1334. doi: 10.1128/IAI.00686-06 17158892

2. Al-Haddawi M, Mitchell GB, Clark ME, Wood RD, Caswell JL. Impairment of innate immune responses of airway epithelium by infection with bovine viral diarrhea virus. Vet Immunol Immunopathol. 2007;116: 153–162. doi: 10.1016/j.vetimm.2007.01.007 17306889

3. Taha-Abdelaziz K, Perez-Casal J, Schott C, Hsiao J, Attah-Poku S, Slavić D, et al. Bactericidal activity of tracheal antimicrobial peptide against respiratory pathogens of cattle. Veterinary Immunology and Immunopathology. 2013;152: 289–294. doi: 10.1016/j.vetimm.2012.12.016 23333196

4. Bassel L, Kaufman E, Alsop S, Stinson K, Hewson J, Sharif S, et al. Development of an aerosolized Mannheimia haemolytica experimental pneumonia model in clean-catch colostrum-deprived calves. Vet Microbiol. 2019; 234: 34–43. doi: 10.1016/j.vetmic.2019.05.012 31213270

5. Lawyer C, Pai S, Watabe M, Bakir H, Eagleton L, Watabe K. Effects of synthetic form of tracheal antimicrobial peptide on respiratory pathogens. J Antimicrob Chemother. 1996;37: 599–604. doi: 10.1093/jac/37.3.599 9182116

6. Harland RJ, Potter AA, van Drunen-Littel-van den Hurk S, Van Donkersgoed J, Parker MD, Zamb TJ, et al. The effect of subunit or modified live bovine herpesvirus-1 vaccines on the efficacy of a recombinant Pasteurella haemolytica vaccine for the prevention of respiratory disease in feedlot calves. Can Vet J. 1992;33: 734–741. 17424116

7. Van Donkersgoed J, Potter AA, Mollison B, Harland RJ. The effect of a combined Pasteurella haemolytica and Haemophilus somnus vaccine and a modified-live bovine respiratory syncytial virus vaccine against enzootic pneumonia in young beef calves. Can Vet J. 1994;35: 239–241. 8076280

8. Van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Veterinary Research. 2018. doi: 10.1186/s13567-018-0558-2 30060758

9. Yang M, Zhang C, Zhang MZ, Zhang S. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiology. 2018; doi: 10.1186/s12866-018-1190-z 29871599

10. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997;88: 553–560. doi: 10.1016/s0092-8674(00)81895-4 9038346

11. Chairatana P, Niramitranon J, Pongprayoon P. Dynamics of human defensin 5 (HD5) self-assembly in solution: Molecular simulations/insights. Comput Biol Chem. 2019;83: 107091. doi: 10.1016/j.compbiolchem.2019.107091 31349122

12. Yang M, Zhang C, Zhang MZ, Zhang S. Novel synthetic analogues of avian β-defensin-12: the role of charge, hydrophobicity, and disulfide bridges in biological functions. BMC Microbiol. 2017;17: 43. doi: 10.1186/s12866-017-0959-9 28231771

13. Li J, Hu Z, Beuerman R, Verma C. Molecular Environment Modulates Conformational Differences between Crystal and Solution States of Human β-Defensin 2. J Phys Chem B. 2017;121: 2739–2747. doi: 10.1021/acs.jpcb.7b00083 28294607

14. Mardirossian M, Pompilio A, Crocetta V, De Nicola S, Guida F, Degasperi M, et al. In vitro and in vivo evaluation of BMAP-derived peptides for the treatment of cystic fibrosis-related pulmonary infections. Amino Acids. 2016; doi: 10.1007/s00726-016-2266-4 27270571

15. Payne JE, Dubois A V., Ingram RJ, Weldon S, Taggart CC, Elborn JS, et al. Activity of innate antimicrobial peptides and ivacaftor against clinical cystic fibrosis respiratory pathogens. International Journal of Antimicrobial Agents. 2017; doi: 10.1016/j.ijantimicag.2017.04.014 28666755

16. Maiti S, Patro S, Purohit S, Jain S, Senapati S, Dey N. Effective control of salmonella infections by employing combinations of recombinant antimicrobial human β-Defensins hBD-1 and hBD-2. Antimicrobial Agents and Chemotherapy. 2014; doi: 10.1128/AAC.03628-14 25199778


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#