Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia
Autoři:
Anielly Galego de Oliveira aff001; Dayani Bailly aff001; Fernanda A. S. Cassemiro aff002; Edivando Vitor do Couto aff003; Nick Bond aff004; Dean Gilligan aff005; Thiago F. Rangel aff002; Angelo Antonio Agostinho aff001; Mark J. Kennard aff006
Působiště autorů:
Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Ictiologia, Limnologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
aff001; Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, GO, Brazil
aff002; Universidade Tecnológica Federal do Paraná, Campo Mourão, PR, Brazil
aff003; Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Victoria, Australia
aff004; NSW Department of Primary Industries–Fisheries, Batemans Bay Fisheries Office, Batemans Bay, New South Wales, Australia
aff005; Australian Rivers Institute, Griffith University, Nathan, Brisbane, Queensland, Australia
aff006
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225128
Souhrn
This study uses species distribution modeling and physiological and functional traits to predict the impacts of climate change on native freshwater fish in the Murray-Darling Basin, Australia. We modelled future changes in taxonomic and functional diversity in 2050 and 2080 for two scenarios of carbon emissions, identifying areas of great interest for conservation. Climatic-environmental variables were used to model the range of 23 species of native fish under each scenario. The consensus model, followed by the physiological filter of lethal temperature was retained for interpretation. Our study predicts a severe negative impact of climate change on both taxonomic and functional components of ichthyofauna of the Murray-Darling Basin. There was a predicted marked contraction of species ranges under both scenarios. The predictions showed loss of climatically suitable areas, species and functional characters. There was a decrease in areas with high values of functional richness, dispersion and uniqueness. Some traits are predicted to be extirpated, especially in the most pessimistic scenario. The climatic refuges for fish fauna are predicted to be in the southern portion of the basin, in the upper Murray catchment. Incorporating future predictions about the distribution of ichthyofauna in conservation management planning will enhance resilience to climate change.
Klíčová slova:
Anthropogenic climate change – Australia – Climate change – Fish physiology – Freshwater fish – Rivers – Species diversity – Taxonomy
Zdroje
1. Pandit SN, Maitland BM, Pandit LK, Poesch MS, Enders EC. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus). Sci Total Environ. 2017;598: 1–11. doi: 10.1016/j.scitotenv.2017.03.228 28433817
2. Leadley P, Pereira HM, Alkemade R, Fernandez-Manjarrés JF, Proença V, Scharleman JPW, et al. Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services [Internet]. Technical. Montreal: Secretariat of the Convention on Biological Diversity; 2010. Available: https://www.cbd.int/doc/publications/cbd-ts-50-en.pdf
3. van Vliet MTH, Ludwig F, Kabat P. Global streamflow and thermal habitats of freshwater fishes under climate change. Clim Change. Springer Netherlands; 2013;121: 739–754. doi: 10.1007/s10584-013-0976-0
4. IPCC. Climate change 2014. Synthesis report. Versión inglés. Pachauri RK, Meyer LA, editors. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014. doi: 10.1017/CBO9781107415324
5. Strayer DL, Dudgeon D. Freshwater biodiversity conservation: recent progress and future challenges. J North Am Benthol Soc. 2010;29: 344–358. doi: 10.1899/08-171.1
6. Revenga C, Campbell I, Abell R, de Villiers P, Bryer M. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos Trans R Soc Lond B Biol Sci. 2005;360: 397–413. doi: 10.1098/rstb.2004.1595 15814353
7. Booth DJ, Bond N, Macreadie P. Detecting range shifts among Australian fishes in response to climate change. Mar Freshw Res. 2011;62: 1027–1042. doi: 10.1071/MF10270
8. James CS, Reside AE, Vanderwal J, Pearson RG, Burrows D, Capon SJ, et al. Sink or swim? Potential for high faunal turnover in Australian rivers under climate change. J Biogeogr. 2017;44: 489–501. doi: 10.1111/jbi.12926
9. Biswas SR, Vogt RJ, Sharma S. Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia. 2017;799: 135–149. doi: 10.1007/s10750-017-3208-1
10. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the concept of trait be functional! Oikos. 2007;116: 882–892. doi: 10.1111/j.0030-1299.2007.15559.x
11. Comte L, Olden JD. Climatic vulnerability of the world ‘ s freshwater and marine fishes. Nat Clim Chang. 2017; 1–6. doi: 10.1038/NCLIMATE3382
12. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486: 59–67. doi: 10.1038/nature11148 22678280
13. Closs GP, Krkosek M, Olden JD, editors. Conservation of Freshwater Fishes [Internet]. Cambridge: Cambridge University Press; 2016. doi: 10.1017/CBO9781139627085
14. Mormul RP, Thomaz SM, Agostinho AA, Bonecker CC, Mazzeo N. Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshw Biol. 2012;57: 1592–1602. doi: 10.1111/j.1365-2427.2012.02820.x
15. Humphries P, Walker K. Ecology of Australian Freshwater Fishes. Collingwood: CSIRO Publishing; 2013.
16. Hoeinghaus DJ, Agostinho AA, Gomes LC, Pelicice FM, Okada EK, Latini JD, et al. Effects of river impoundment on ecosystem services of large tropical rivers: Embodied energy and market value of artisanal fisheries. Conserv Biol. 2009;23: 1222–1231. doi: 10.1111/j.1523-1739.2009.01248.x 19459891
17. Buisson L, Grenouillet G, Villéger S, Canal J, Laffaille P. Toward a loss of functional diversity in stream fish assemblages under climate change. Glob Chang Biol. 2013;19: 387–400. doi: 10.1111/gcb.12056 23504778
18. Morrongiello JR, Beatty SJ, Bennett JC, Crook DA, Ikedife DNEN, Kennard MJ, et al. Climate change and its implications for Australia’s freshwater fish. Mar Freshw Res. 2011;62: 1082. doi: 10.1071/mf10308
19. Lintermans M. Fishes of the Murray-Darling Basin: An Introductory guide. Murray-Darling Basin Authority; 2009.
20. Balcombe SR, Sheldon F, Capon SJ, Bond NR, Hadwen WL, Marsh N, et al. Climate-change threats to native fish in degraded rivers and floodplains of the Murray–Darling Basin, Australia. Mar Freshw Res. 2011;62: 1099. doi: 10.1071/mf11059
21. Bond N, Thomson J, Reich P, Stein J. Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Mar Freshw Res. 2011;62: 1043–1061. doi: 10.1071/mf10286
22. Murray-Darling Basin Authority. Native Fish Strategy for the Murray-Darling Basin 2003–2013 [Internet]. Canberra: Murray-Darling Basin Commission; 2004. Available: https://www.mdba.gov.au/sites/default/files/pubs/NFS-for-MDB-2003-2013.pdf
23. Villéger S, Brosse S, Mouchet M, Mouillot D, Vanni MJ. Functional ecology of fish: current approaches and future challenges. Aquat Sci. 2017;79: 783–801. doi: 10.1007/s00027-017-0546-z
24. Peterson AT, Soberón J. Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Nat Conserv. 2012;10: 102–107. doi: 10.4322/natcon.2012.019
25. Elith J, Kearney M, Phillips S. The art of modelling range-shifting species. Methods Ecol Evol. 2010;1: 330–342. doi: 10.1111/j.2041-210X.2010.00036.x
26. Comte L, Olden JD. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob Chang Biol. 2017;23: 728–736. doi: 10.1111/gcb.13427 27406402
27. Soberón J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett. 2007;10: 1115–1123. doi: 10.1111/j.1461-0248.2007.01107.x 17850335
28. Bishop-Taylor R, Tulbure MG, Broich M. Surface-water dynamics and land use influence landscape connectivity across a major dryland region. Ecol Appl. 2017;27: 1124–1137. doi: 10.1002/eap.1507 28117907
29. Hart BT. The Australian Murray-Darling Basin Plan: factors leading to its successful development. Ecohydrol Hydrobiol. 2016;16: 229–241. doi: 10.1016/J.ECOHYD.2016.09.002
30. Murray Darling Basin Authority. Discover the Basin | Murray-Darling Basin Authority [Internet]. 2019 [cited 25 Sep 2019]. Available: https://www.mdba.gov.au/discover-basin
31. Davies PEA, Harris JHB, Hillman TJC, Walker KFD. The Sustainable Rivers Audit: assessing river ecosystem health in the Murray-Darling Basin, Australia. Mar Freshw Res. 2010;61: 764–777.
32. Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop). 2006;29: 773–785. doi: 10.1111/j.0906-7590.2006.04700.x
33. Petitpierre B, Broennimann O, Kueffer C, Daehler C, Guisan A. Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions. Glob Ecol Biogeogr. John Wiley & Sons, Ltd (10.1111); 2017;26: 275–287. doi: 10.1111/geb.12530
34. Koehn JD, Hobday AJ, Pratchett MS, Gillanders BM. Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Mar Freshw Res. 2011;62: 1148–1164.
35. Pörtner HO, Farrell AP. Physiology and Climate Change. Science (80-). 2008;322: 690–692. doi: 10.1126/science.1163156 18974339
36. Lopes TM, Bailly D, Almeida BA, Santos NCL, Gimenez BCG, Landgraf GO, et al. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS One. 2017;12: 1–18. doi: 10.1371/journal.pone.0179684 28654663
37. Stein JL, Hutchinson MF, Stein JA. A new stream and nested catchment framework for Australia. Hydrol Earth Syst Sci. 2014;18: 1917–1933. doi: 10.5194/hess-18-1917-2014
38. K-1 Model Developers. K-1 Coupled GCM (MIROC) Description [Internet]. Hasumi H, Emori S, editors. K-1 technical report. Tokyo: Center for Climate System Research, University of Tokyo, National Institute for Environmental Studies, and Frontier Research Center for Global Change; 2004. Available: http://ccsr.aori.u-tokyo.ac.jp/~hasumi/miroc_description.pdf
39. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al. The representative concentration pathways: an overview. Clim Change. Springer Netherlands; 2011;109: 5–31. doi: 10.1007/s10584-011-0148-z
40. Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T, Loyola RD, Hof C, Nogués-Bravo D, et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography (Cop). 2009;32: 897–906. doi: 10.1111/j.1600-0587.2009.06196.x
41. Araújo MB, New M. Ensemble forecasting of species distributions. Trends Ecol Evol. Elsevier Current Trends; 2007;22: 42–47. doi: 10.1016/J.TREE.2006.09.010 17011070
42. Busby JR. BIOCLIM–A bioclimatic analysis and prediction system. In: Margules C. R and Austin MP, editor. Nature Conservation: Cost Effective Biological Surveys and Data Analysis. Melbourne: CSIRO; 1991. pp. 64–68.
43. Carpenter G, Gillison AN, Winter J. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv. 1993;2: 667–680. doi: 10.1007/BF00051966
44. Gower JC. A General Coefficient of Similarity and Some of Its Properties. Biometrics. 1971;27: 857–871. doi: 10.2307/2528823
45. Hirzel AH, Hausser J, Chessel D, Perrin N. Ecological‐niche factor analysis: how to compute habitat‐suitability maps without absence data? Ecology. 2002;83: 2027–2036. doi: 10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
46. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190: 231–259. doi: 10.1016/J.ECOLMODEL.2005.03.026
47. Stockwell D. The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci. 1999;13: 143–158. doi: 10.1080/136588199241391
48. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological Niches and Geographic Distributions. Princeton: Princeton University Press; 2011.
49. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006;43: 1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x
50. Morrill JC, Bales RC, Asce M, Conklin MH. Estimating Stream Temperature from Air Temperature: Implications for Future Water Quality. J Environ Eng. 2005;131: 139–146.
51. Whiterod NR. The bioenergetic implications for Murray cod (Maccullochella peelii) below a large hypolimnetic-releasing impoundment by. Charles Sturt University. 2010.
52. Chessman BC. Identifying species at risk from climate change: Traits predict the drought vulnerability of freshwater fishes. Biol Conserv. 2013;160: 40–49. doi: 10.1016/j.biocon.2012.12.032
53. Froese R, Pauly D. FishBase. In: World Wide Web [Internet]. 2019. Available: www.fishbase.org doi: 10.1007/s11280-018-0637-3
54. Overton JMC, Stephens RTT, Leathwick JR, Lehmann A. Information pyramids for informed biodiversity conservation. Biodivers Conserv. 2002;11: 2093–2116. doi: 10.1023/A:1021386426790
55. Murray-Darling Basin Authority. Basin Plan Evaluation 2017 [Internet]. Canberra: Murray-Darling Basin Authority; 2017. Available: https://www.mdba.gov.au/sites/default/files/pubs/BPE-report-2017.pdf
56. McDowall RM. Freshwater fishes of south-eastern Australia [Internet]. Reed; 1996. Available: https://trove.nla.gov.au/work/31749173?q&versionId=38517287
57. Allen GR, Midgley SH, Allen M, Western Australian Museum. Field guide to the freshwater fishes of Australia. Revisited. Perth: Western Australian Museum; 2003.
58. Pusey B, Kennard MJ, Arthington AH. Freshwater fishes of north-eastern Australia [Internet]. CSIRO; 2004. Available: https://www.publish.csiro.au/book/3922/
59. Poff NL, Allan JD. Functional organization os stream fish assemblages in relation to hydrological variability. Ecology. 2015;76: 606–627.
60. Sternberg D, Kennard MJ. Environmental, spatial and phylogenetic determinants of fish life-history traits and functional composition of Australian rivers. Freshw Biol. 2013;58: 1767–1778. doi: 10.1111/fwb.12166
61. Villéger S, Mason NWH, Mouillot D. New multidimensionale functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008;89: 2290–2301. doi: 10.1890/07-1206.1 18724739
62. Laliberté E, Legendre P. A distance-based framework for measuring functional diversity from multiple traits. Ecology. 2010;91: 299–305. doi: 10.1890/08-2244.1 20380219
63. Ricotta C, de Bello F, Moretti M, Caccianiga M, Cerabolini BEL, Pavoine S. Measuring the functional redundancy of biological communities: a quantitative guide. Peres-Neto P, editor. Methods Ecol Evol. 2016;7: 1386–1395. doi: 10.1111/2041-210X.12604
64. Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9: 683–693. doi: 10.1111/j.1461-0248.2006.00926.x 16706913
65. R Core Team. R: The R Project for Statistical Computing. In: The R Foundation [Internet]. 2019 [cited 4 Jun 2019]. Available: https://www.r-project.org/
66. Griffith DA, Peres-Neto PR. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology. 2006;87: 2603–13. doi: 10.1890/0012-9658(2006)87[2603:smietf]2.0.co;2 17089668
67. Legendre P, Legendre L. Numerical ecology. Elsevier; 2012.
68. Pillar VD, Duarte LDS, Sosinski EE, Joner F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J Veg Sci. 2009;20: 334–348. doi: 10.1111/j.1654-1103.2009.05666.x
69. Dufrêne M, Legendre P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67: 345–366. doi: 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
70. Franklin J, Miller JA. Mapping species distributions [Internet]. Cambridge: Cambridge University Press; 2010. doi: 10.1017/CBO9780511810602
71. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW. Can mechanism inform species’ distribution models? Ecol Lett. 2010;13: 1041–1054. doi: 10.1111/j.1461-0248.2010.01479.x 20482574
72. Kearney MR, Wintle BA, Porter WP. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett. 2010;3: 203–213. doi: 10.1111/j.1755-263X.2010.00097.x
73. Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, et al. Predicting extinction risks under climate change: Coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett. 2008;4: 560–563. doi: 10.1098/rsbl.2008.0049 18664424
74. Sutherst RW, Maywald GF, Bourne S. Including species interactions in risk assessments for global change. Glob Chang Biol. 2007;13: 1843–1859. doi: 10.1111/j.1365-2486.2007.01396.x
75. Parmesan C. Ecological and Evolutionary Responses to Recent Climate Change. Annu Rev Ecol Evol Syst. 2006;37: 637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100
76. Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT, Cardelus CL, et al. in the Wet Tropics. Science (80-). 2008;322: 258–261. doi: 10.1126/science.1162547 18845754
77. Cuyckens GAE, Christie DA, Domic AI, Malizia LR, Renison D. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Glob Planet Change. 2016;137: 79–87. doi: 10.1016/j.gloplacha.2015.12.010
78. Comte L, Grenouillet G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography (Cop). 2013;36: 1236–1246. doi: 10.1111/j.1600-0587.2013.00282.x
79. HIDDINK JG, ter HOFSTEDE R. Climate induced increases in species richness of marine fishes. Glob Chang Biol. 2008;14: 453–460. doi: 10.1111/j.1365-2486.2007.01518.x
80. Bagchi R, Hole DG, Butchart SHM, Collingham YC, Fishpool LD, Plumptre AJ, et al. Forecasting potential routes for movement of endemic birds among important sites for biodiversity in the Albertine Rift under projected climate change. Ecography (Cop). 2018;41: 401–413. doi: 10.1111/ecog.02712
81. Lenoir J, Gégout JC, Marquet PA, De Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science (80-). 2008;320: 1768–1771. doi: 10.1126/science.1156831 18583610
82. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of changing biodiversity. Nature. 2000;405: 234–242. doi: 10.1038/35012241 10821284
83. Ficke AD, Myrick CA, Hansen LJ. Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish. 2007;17: 581–613. doi: 10.1007/s11160-007-9059-5
84. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, et al. The Natural Flow Regime. Bioscience. 1997;47: 769–784. doi: 10.2307/1313099
85. Bunn SE, Arthington AH. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environ Manage. 2002;30: 492–507. doi: 10.1007/s00267-002-2737-0 12481916
86. Kennard MJ, Pusey BJ, Olden JD, Mackay SJ, Stein JL, Marsh N. Classification of natural flow regimes in Australia to support environmental flow management. Freshw Biol. 2010;55: 171–193. doi: 10.1111/j.1365-2427.2009.02307.x
87. Ferro VG, Lemes P, Melo AS, Loyola R. The Reduced Effectiveness of Protected Areas under Climate Change Threatens Atlantic Forest Tiger Moths. Fenton B, editor. PLoS One. 2014;9: e107792. doi: 10.1371/journal.pone.0107792 25229422
88. Fuller RA, McDonald-Madden E, Wilson KA, Carwardine J, Grantham HS, Watson JEM, et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature. 2010;466: 365–367. doi: 10.1038/nature09180 20592729
89. Perez TM, Stroud JT, Feeley KJ. Thermal trouble in the tropics. Science (80-). 2016;351: 1392–1393. doi: 10.1126/science.aaf3343 27013713
90. Janzen DH. Why mountain passes are higher in the tropics? Am Nat. 1967;101: 233–249. Available: http://about.jstor.org/terms
91. Tewksbury JJ, Huey RB, Deutsch CA. Putting the heat on tropical animals the scale of prediction. Science (80-). 2008;30: 1296–1297.
92. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B Biol Sci. 2014;281: 20132612–20132612. doi: 10.1098/rspb.2013.2612 24478296
93. Winter M, Kühn I, Nentwig W, Klotz S. Spatial aspects of trait homogenization within the German flora. J Biogeogr. 2008;35: 2289–2297. doi: 10.1111/j.1365-2699.2008.01967.x
94. Clavero M, Brotons L. Functional homogenization of bird communities along habitat gradients: Accounting for niche multidimensionality. Glob Ecol Biogeogr. 2010;19: 684–696. doi: 10.1111/j.1466-8238.2010.00544.x
95. Trueman W. True Tales of the Trout Cod: River histories of the Murray-Darling Basin. Canberra: Murray-Darling Basin Authority; 2011.
96. Winemiller KO, Jepsen DB. Migratory Neotropical Fishes Subsidize Food webs of oligotrophic blackwater rivers. In: Polis GA, Power ME, Huxel GR, editors. Food webs at the landscape level. University of Chicago Press; 2004. pp. 115–132.
97. Beatty SJ, Morgan DL, Lymbery AJ. Implications of climate change for potamodromous fishes. Glob Chang Biol. 2014;20: 1794–1807. doi: 10.1111/gcb.12444 24307662
98. PMSEIC Independent Working Group. Climate Change in Australia: Regional Impacts and Adaptation–Managing the Risk for Australia, Report Prepared for the Prime Minister’s Science, Engineering and Innovation Council. Canberra; 2007.
99. CSIRO. Water availability in the Murray-Darling Basin. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. Canberra; 2008.
100. Schindler DE, Eby LA. Stoichiometry of Fishes and Their Prey: Implications for Nutrient Recycling. Ecology. 2016;78: 1816–1831.
101. Liu X, Guo Z, Ke Z, Wang S, Li Y. Increasing potential risk of a global Aquatic invader in Europe in contrast to other continents under future climate change. PLoS One. 2011;6: 1–11. doi: 10.1371/journal.pone.0018429 21479188
102. Moyle PB, Kiernan JD, Crain PK, Quiñones RM. Climate Change Vulnerability of Native and Alien Freshwater Fishes of California: A Systematic Assessment Approach. Chapman MG, editor. PLoS One. 2013;8: e63883. doi: 10.1371/journal.pone.0063883 23717503
103. Sinclair SJ, White MD, Newell GR. How Useful Are Species Distribution Models for Managing Biodiversity under Future Climates? Ecol Soc. 2010;15: 8 [online].
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy