#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

SNARE proteins rescue impaired autophagic flux in Down syndrome


Autoři: Stefanos Aivazidis aff001;  Abhilasha Jain aff001;  Abhishek K. Rauniyar aff001;  Colin C. Anderson aff001;  John O. Marentette aff001;  David J. Orlicky aff002;  Kristofer S. Fritz aff001;  Peter S. Harris aff001;  David Siegel aff001;  Kenneth N. Maclean aff003;  James R. Roede aff001
Působiště autorů: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States of America aff001;  Department of Pathology, University of Colorado School of Medicine, Aurora, CO, United States of America aff002;  Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States of America aff003;  The Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223254

Souhrn

Down syndrome (DS) is a chromosomal disorder caused by trisomy of chromosome 21 (Ts21). Unbalanced karyotypes can lead to dysfunction of the proteostasis network (PN) and disrupted proteostasis is mechanistically associated with multiple DS comorbidities. Autophagy is a critical component of the PN that has not previously been investigated in DS. Based on our previous observations of PN disruption in DS, we investigated possible dysfunction of the autophagic machinery in human DS fibroblasts and other DS cell models. Following induction of autophagy by serum starvation, DS fibroblasts displayed impaired autophagic flux indicated by autophagolysosome accumulation and elevated p62, NBR1, and LC3-II abundance, compared to age- and sex-matched, euploid (CTL) fibroblasts. While lysosomal physiology was unaffected in both groups after serum starvation, we observed decreased basal abundance of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein Receptor (SNARE) family members syntaxin 17 (STX17) and Vesicle Associated Membrane Protein 8 (VAMP8) indicating that decreased autophagic flux in DS is due at least in part to a possible impairment of autophagosome-lysosome fusion. This conclusion was further supported by the observation that over-expression of either STX17 or VAMP8 in DS fibroblasts restored autophagic degradation and reversed p62 accumulation. Collectively, our results indicate that impaired autophagic clearance is a characteristic of DS cells that can be reversed by enhancement of SNARE protein expression and provides further evidence that PN disruption represents a candidate mechanism for multiple aspects of pathogenesis in DS and a possible future target for therapeutic intervention.

Klíčová slova:

Autophagic cell death – Cultured fibroblasts – Fibroblasts – Immunofluorescence – Induced pluripotent stem cells – Lysosomes – SNARE proteins – Down syndrome


Zdroje

1. Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VL, et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci. 2015;16(9):564–74. doi: 10.1038/nrn3983 26243569; PubMed Central PMCID: PMC4678594.

2. Boghossian NS, Hansen NI, Bell EF, Stoll BJ, Murray JC, Carey JC, et al. Mortality and morbidity of VLBW infants with trisomy 13 or trisomy 18. Pediatrics. 2014;133(2):226–35. Epub 2014/01/20. doi: 10.1542/peds.2013-1702 24446439; PubMed Central PMCID: PMC3904274.

3. Wang X, Huang T, Bu G, Xu H. Dysregulation of protein trafficking in neurodegeneration. Molecular neurodegeneration. 2014;9:31. doi: 10.1186/1750-1326-9-31 25152012; PubMed Central PMCID: PMC4237948.

4. Blom NA, Ottenkamp J, Wenink AG, Gittenberger-de Groot AC. Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. The American journal of cardiology. 2003;91(2):180–4. doi: 10.1016/s0002-9149(02)03106-5 12521631.

5. Aitken RJ, Mehers KL, Williams AJ, Brown J, Bingley PJ, Holl RW, et al. Early-onset, coexisting autoimmunity and decreased HLA-mediated susceptibility are the characteristics of diabetes in Down syndrome. Diabetes Care. 2013;36(5):1181–5. doi: 10.2337/dc12-1712 23275362; PubMed Central PMCID: PMC3631858.

6. Bloemers BL, van Bleek GM, Kimpen JL, Bont L. Distinct abnormalities in the innate immune system of children with Down syndrome. J Pediatr. 2010;156(5):804–9, 9.e1-9.e5. Epub 2010/02/20. doi: 10.1016/j.jpeds.2009.12.006 20172534.

7. Ram G, Chinen J. Infections and immunodeficiency in Down syndrome. Clin Exp Immunol. 2011;164(1):9–16. Epub 2011/02/24. doi: 10.1111/j.1365-2249.2011.04335.x 21352207; PubMed Central PMCID: PMC3074212.

8. Aivazidis S, Coughlan CM, Rauniyar AK, Jiang H, Liggett LA, Maclean KN, et al. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS One. 2017;12(4):e0176307. Epub 2017/04/21. doi: 10.1371/journal.pone.0176307 28430800; PubMed Central PMCID: PMC5400264.

9. Perluigi M, Pupo G, Tramutola A, Cini C, Coccia R, Barone E, et al. Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim Biophys Acta. 2014;1842(7):1144–53. doi: 10.1016/j.bbadis.2014.04.007 24735980; PubMed Central PMCID: PMC4062876.

10. Di Domenico F, Coccia R, Cocciolo A, Murphy MP, Cenini G, Head E, et al. Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain. Biochimica et biophysica acta. 2013;1832(8):1249–59. doi: 10.1016/j.bbadis.2013.04.013 23603808; PubMed Central PMCID: PMC3940071.

11. Lanzillotta C, Tramutola A, Meier S, Schmitt F, Barone E, Perluigi M, et al. Early and Selective Activation and Subsequent Alterations to the Unfolded Protein Response in Down Syndrome Mouse Models. J Alzheimers Dis. 2018;62(1):347–59. doi: 10.3233/JAD-170617 29439332; PubMed Central PMCID: PMC5988365.

12. Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, et al. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease. Mol Psychiatry. 2016;21(5):707–16. Epub 2015/07/21. doi: 10.1038/mp.2015.97 26194181; PubMed Central PMCID: PMC4721948.

13. Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A, et al. Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(4):1630–5. doi: 10.1073/pnas.0908953107 20080541; PubMed Central PMCID: PMC2824382.

14. Iyer AM, van Scheppingen J, Milenkovic I, Anink JJ, Adle-Biassette H, Kovacs GG, et al. mTOR Hyperactivation in down syndrome hippocampus appears early during development. J Neuropathol Exp Neurol. 2014;73(7):671–83. doi: 10.1097/NEN.0000000000000083 24918639.

15. Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64. doi: 10.1146/annurev-biochem-060614-033955 25784053; PubMed Central PMCID: PMC4539002.

16. Kliková K, Pilchova I, Stefanikova A, Hatok J, Dobrota D, Racay P. The Role of Heat Shock Proteins in Leukemia. Klin Onkol. 2016;29(1):29–38. 26879061.

17. Kharabi Masouleh B, Geng H, Hurtz C, Chan LN, Logan AC, Chang MS, et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(21):E2219–28. doi: 10.1073/pnas.1400958111 24821775; PubMed Central PMCID: PMC4040579.

18. Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Molecular aspects of medicine. 2015;42:105–18. doi: 10.1016/j.mam.2015.01.001 25579745; PubMed Central PMCID: PMC4404191.

19. Jaisson S, Gillery P. Impaired proteostasis: role in the pathogenesis of diabetes mellitus. Diabetologia. 2014;57(8):1517–27. doi: 10.1007/s00125-014-3257-1 24816368.

20. Chen ZF, Li YB, Han JY, Wang J, Yin JJ, Li JB, et al. The double-edged effect of autophagy in pancreatic beta cells and diabetes. Autophagy. 2011;7(1):12–6. Epub 2011/01/01. doi: 10.4161/auto.7.1.13607 20935505; PubMed Central PMCID: PMC3039729.

21. Sulistio YA, Heese K. The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol. 2016;53(2):905–31. Epub 2015/01/07. doi: 10.1007/s12035-014-9063-4 25561438.

22. Li JQ, Yu JT, Jiang T, Tan L. Endoplasmic reticulum dysfunction in Alzheimer's disease. Molecular neurobiology. 2015;51(1):383–95. doi: 10.1007/s12035-014-8695-8 24715417.

23. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease. Prog Neurobiol. 2012;96(1):87–95. Epub 2011/11/22. doi: 10.1016/j.pneurobio.2011.11.005 22138392.

24. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian Autophagy: How Does It Work? Annu Rev Biochem. 2016;85:685–713. Epub 2016/02/08. doi: 10.1146/annurev-biochem-060815-014556 26865532.

25. Aburto MR, Hurlé JM, Varela-Nieto I, Magariños M. Autophagy during vertebrate development. Cells. 2012;1(3):428–48. Epub 2012/08/02. doi: 10.3390/cells1030428 24710484; PubMed Central PMCID: PMC3901104.

26. Li H, Li D, Ma Z, Qian Z, Kang X, Jin X, et al. Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. Autophagy. 2018. Epub 2018/07/02. doi: 10.1080/15548627.2018.1483807 29962255.

27. Di Bartolomeo S, Nazio F, Cecconi F. The role of autophagy during development in higher eukaryotes. Traffic. 2010;11(10):1280–9. doi: 10.1111/j.1600-0854.2010.01103.x 20633243.

28. Fimia GM, Kroemer G, Piacentini M. Molecular mechanisms of selective autophagy. Cell Death Differ. 2013;20(1):1–2. doi: 10.1038/cdd.2012.97 23222486; PubMed Central PMCID: PMC3524629.

29. Pajares M, Jiménez-Moreno N, Dias IH, Debelec B, Vucetic M, Fladmark KE, et al. Redox control of protein degradation. Redox Biol. 2015;6:409–20. Epub 2015/09/09. doi: 10.1016/j.redox.2015.07.003 26381917; PubMed Central PMCID: PMC4576413.

30. Gretzmeier C, Eiselein S, Johnson GR, Engelke R, Nowag H, Zarei M, et al. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy. Autophagy. 2017;13(6):1064–75. Epub 2017/04/28. doi: 10.1080/15548627.2016.1274485 28453381; PubMed Central PMCID: PMC5486358.

31. Mukhopadhyay S, Naik PP, Panda PK, Sinha N, Das DN, Bhutia SK. Serum starvation induces anti-apoptotic cIAP1 to promote mitophagy through ubiquitination. Biochem Biophys Res Commun. 2016;479(4):940–6. Epub 2016/09/28. doi: 10.1016/j.bbrc.2016.09.143 27693792.

32. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins in the immune system. Nat Immunol. 2015;16(10):1014–24. doi: 10.1038/ni.3273 26382870.

33. Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity. 2013;39(2):211–27. doi: 10.1016/j.immuni.2013.07.017 23973220.

34. Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012;441(2):523–40. doi: 10.1042/BJ20111451 22187934; PubMed Central PMCID: PMC3258656.

35. Lash LH, Fisher JW, Lipscomb JC, Parker JC. Metabolism of trichloroethylene. Environmental health perspectives. 2000;108 Suppl 2:177–200. doi: 10.1289/ehp.00108177 10807551; PubMed Central PMCID: PMC1637769.

36. Li LB, Chang KH, Wang PR, Hirata RK, Papayannopoulou T, Russell DW. Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell. 2012;11(5):615–9. doi: 10.1016/j.stem.2012.08.004 23084023; PubMed Central PMCID: PMC3705773.

37. Orlicky DJ, Monks J, Stefanski AL, McManaman JL. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PloS one. 2013;8(6):e66837. doi: 10.1371/journal.pone.0066837 23825572; PubMed Central PMCID: PMC3692517.

38. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11(9):709–30. doi: 10.1038/nrd3802 22935804; PubMed Central PMCID: PMC3518431.

39. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73. Epub 2013/08/02. doi: 10.1089/ars.2013.5371 23725295; PubMed Central PMCID: PMC3894687.

40. Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7(3):279–96. doi: 10.4161/auto.7.3.14487 21189453; PubMed Central PMCID: PMC3060413.

41. Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015;282(24):4672–8. Epub 2015/10/16. doi: 10.1111/febs.13540 26432171.

42. Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans. 2013;41(5):1103–30. doi: 10.1042/BST20130134 24059496.

43. Sarkar S, Rubinsztein DC. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J. 2008;275(17):4263–70. Epub 2008/07/15. doi: 10.1111/j.1742-4658.2008.06562.x 18637946.

44. Nixon RA. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. FASEB J. 2017;31(7):2729–43. doi: 10.1096/fj.201700359 28663518.

45. Whyte LS, Lau AA, Hemsley KM, Hopwood JJ, Sargeant TJ. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer's disease? J Neurochem. 2017;140(5):703–17. Epub 2017/01/23. doi: 10.1111/jnc.13935 28027395.

46. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ. The role of autophagy in Parkinson's disease. Cold Spring Harb Perspect Med. 2012;2(4):a009357. doi: 10.1101/cshperspect.a009357 22474616; PubMed Central PMCID: PMC3312403.

47. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi: 10.1080/15548627.2015.1100356 26799652; PubMed Central PMCID: PMC4835977.

48. Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 2003;13(3):137–45. 12628346.

49. Redmann M, Benavides GA, Berryhill TF, Wani WY, Ouyang X, Johnson MS, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol. 2017;11:73–81. Epub 2016/11/18. doi: 10.1016/j.redox.2016.11.004 27889640; PubMed Central PMCID: PMC5124357.

50. DeVorkin L, Gorski SM. LysoTracker staining to aid in monitoring autophagy in Drosophila. Cold Spring Harb Protoc. 2014;2014(9):951–8. Epub 2014/09/02. doi: 10.1101/pdb.prot080325 25183815.

51. Mizunoe Y, Sudo Y, Okita N, Hiraoka H, Mikami K, Narahara T, et al. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice. Autophagy. 2017;13(4):642–53. Epub 2017/01/25. doi: 10.1080/15548627.2016.1274850 28121218; PubMed Central PMCID: PMC5388215.

52. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy. 2014;10(12):2208–22. doi: 10.4161/15548627.2014.981787 25484084; PubMed Central PMCID: PMC4502690.

53. Cell Gerald K. and Biology Molecular. 4th ed2002.

54. Jahn R, Scheller RH. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43. Epub 2006/08/16. doi: 10.1038/nrm2002 16912714.

55. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151(6):1256–69. doi: 10.1016/j.cell.2012.11.001 23217709.

56. Itakura E, Mizushima N. Syntaxin 17: the autophagosomal SNARE. Autophagy. 2013;9(6):917–9. Epub 2013/03/06. doi: 10.4161/auto.24109 23466629; PubMed Central PMCID: PMC3672300.

57. Huang L, Yuan P, Yu P, Kong Q, Xu Z, Yan X, et al. O-GlcNAc-modified SNAP29 inhibits autophagy-mediated degradation via the disturbed SNAP29-STX17-VAMP8 complex and exacerbates myocardial injury in type I diabetic rats. Int J Mol Med. 2018;42(6):3278–90. Epub 2018/09/07. doi: 10.3892/ijmm.2018.3866 30221662; PubMed Central PMCID: PMC6202107.

58. Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr. 2015;4(2):76–92. doi: 10.3978/j.issn.2224-4336.2015.03.03 26835364; PubMed Central PMCID: PMC4729084.

59. Zwaan CM, Kaspers GJ, Pieters R, Hahlen K, Janka-Schaub GE, van Zantwijk CH, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells in children with and without Down syndrome. Blood. 2002;99(1):245–51. doi: 10.1182/blood.v99.1.245 11756178.

60. Frost BM, Gustafsson G, Larsson R, Nygren P, Lönnerholm G. Cellular cytotoxic drug sensitivity in children with acute leukemia and Down's syndrome: an explanation to differences in clinical outcome? Leukemia. 2000;14(5):943–4. doi: 10.1038/sj.leu.2401753 10803530.

61. Oromendia AB, Dodgson SE, Amon A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 2012;26(24):2696–708. doi: 10.1101/gad.207407.112 23222101; PubMed Central PMCID: PMC3533075.

62. Donnelly N, Storchová Z. Aneuploidy and proteotoxic stress in cancer. Mol Cell Oncol. 2015;2(2):e976491. Epub 2015/02/25. doi: 10.4161/23723556.2014.976491 27308438; PubMed Central PMCID: PMC4904904.

63. Oromendia AB, Amon A. Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech. 2014;7(1):15–20. doi: 10.1242/dmm.013391 24396150; PubMed Central PMCID: PMC3882044.

64. Dephoure N, Hwang S, O'Sullivan C, Dodgson SE, Gygi SP, Amon A, et al. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. Elife. 2014;3:e03023. doi: 10.7554/eLife.03023 25073701; PubMed Central PMCID: PMC4129440.

65. Santaguida S, Vasile E, White E, Amon A. Aneuploidy-induced cellular stresses limit autophagic degradation. Genes Dev. 2015;29(19):2010–21. Epub 2015/09/24. doi: 10.1101/gad.269118.115 26404941; PubMed Central PMCID: PMC4604343.

66. Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneuploidy-selective antiproliferation compounds. Cell. 2011;144(4):499–512. doi: 10.1016/j.cell.2011.01.017 21315436; PubMed Central PMCID: PMC3532042.

67. Donnelly N, Storchová Z. Causes and consequences of protein folding stress in aneuploid cells. Cell Cycle. 2015;14(4):495–501. doi: 10.1080/15384101.2015.1006043 25602365; PubMed Central PMCID: PMC4347676.

68. Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J. 2014;33(20):2374–87. doi: 10.15252/embj.201488648 25205676; PubMed Central PMCID: PMC4253526.

69. Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z. Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol. 2012;8:608. doi: 10.1038/msb.2012.40 22968442; PubMed Central PMCID: PMC3472693.

70. Amaya C, Fader CM, Colombo MI. Autophagy and proteins involved in vesicular trafficking. FEBS Lett. 2015;589(22):3343–53. Epub 2015/10/09. doi: 10.1016/j.febslet.2015.09.021 26450776.

71. Moreau K, Renna M, Rubinsztein DC. Connections between SNAREs and autophagy. Trends Biochem Sci. 2013;38(2):57–63. Epub 2013/01/08. doi: 10.1016/j.tibs.2012.11.004 23306003.

72. Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, et al. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016;60:97–104. Epub 2016/07/12. doi: 10.1016/j.semcdb.2016.07.009 27422330; PubMed Central PMCID: PMC5161566.

73. Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, et al. Down syndrome fibroblast model of Alzheimer-related endosome pathology: accelerated endocytosis promotes late endocytic defects. Am J Pathol. 2008;173(2):370–84. Epub 2008/06/05. doi: 10.2353/ajpath.2008.071053 18535180; PubMed Central PMCID: PMC2475775.

74. Hegedűs K, Takáts S, Kovács AL, Juhász G. Evolutionarily conserved role and physiological relevance of a STX17/Syx17 (syntaxin 17)-containing SNARE complex in autophagosome fusion with endosomes and lysosomes. Autophagy. 2013;9(10):1642–6. Epub 2013/07/22. doi: 10.4161/auto.25684 24113031.

75. Cox TM, Rosenbloom BE, Barker RA. Gaucher disease and comorbidities: B-cell malignancy and parkinsonism. Am J Hematol. 2015;90 Suppl 1:S25–8. doi: 10.1002/ajh.24057 26096744.

76. Mazzulli JR, Zunke F, Tsunemi T, Toker NJ, Jeon S, Burbulla LF, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36(29):7693–706. doi: 10.1523/JNEUROSCI.0628-16.2016 27445146; PubMed Central PMCID: PMC4951575.

77. Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman's disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2(9):670–9. doi: 10.1016/S2468-1253(17)30052-3 28786388.

78. Fraldi A, Klein AD, Medina DL, Settembre C. Brain Disorders Due to Lysosomal Dysfunction. Annu Rev Neurosci. 2016;39:277–95. Epub 2016/04/18. doi: 10.1146/annurev-neuro-070815-014031 27090953.

79. James RA, Singh-Grewal D, Lee SJ, McGill J, Adib N, Group APR. Lysosomal storage disorders: A review of the musculoskeletal features. J Paediatr Child Health. 2016;52(3):262–71. doi: 10.1111/jpc.13122 27124840.

80. Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, et al. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 2013;5(5):1302–15. Epub 2013/11/27. doi: 10.1016/j.celrep.2013.10.042 24290752; PubMed Central PMCID: PMC3957429.

81. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354. doi: 10.1126/science.aac4354 27365453.

82. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013;82:323–55. doi: 10.1146/annurev-biochem-060208-092442 23746257.

83. Dikic I. Proteasomal and Autophagic Degradation Systems. Annu Rev Biochem. 2017;86:193–224. Epub 2017/05/01. doi: 10.1146/annurev-biochem-061516-044908 28460188.

84. Dahlmann B. Role of proteasomes in disease. BMC Biochem. 2007;8 Suppl 1:S3. Epub 2007/11/22. doi: 10.1186/1471-2091-8-S1-S3 18047740; PubMed Central PMCID: PMC2106367.

85. Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med. 2017;108:383–93. Epub 2017/03/29. doi: 10.1016/j.freeradbiomed.2017.03.031 28363604.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#