Identifying resurrection genes through the differentially expressed genes between Selaginella tamariscina (Beauv.) spring and Selaginella moellendorffii Hieron under drought stress
Autoři:
Wei Gu aff001; Aqin Zhang aff001; Hongmei Sun aff001; Yuchen Gu aff001; Jianguo Chao aff001; Rong Tian aff001; Jin-Ao Duan aff001
Působiště autorů:
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
aff001; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224765
Souhrn
Selaginella tamariscina (Beauv.) spring, a primitive vascular resurrection plant, can survive extreme drought and recover when water becomes available. To identify drought-inducible genes and to clarify the molecular mechanism of drought tolerance, a comparative transcriptional pattern analysis was conducted between S. tamariscina and Selaginella moellendorffii Hieron (drought sensitive). 133 drought related genes were identified, including 72 functional genes and 61 regulatory genes. And several drought responsive reactions, such as antioxidant activity, osmotic balance, cuticle defense and signal transduction were highlighted in S. tamariscina under drought. Notably, besides peroxidase, catalase and L-ascorbate oxidase genes, DEGs associated with phenylalanine metabolism and polyamine catabolism could be alternative ways to enhance antioxidant ability in S. tamariscina. DEGs related to soluble carbohydrate metabolism, late embryogenesis abundant protein (LEA) and aquaporin protein (AQP) confirmed that osmotic adjustment could resist drought during desiccation. DEGs involved in xyloglucan metabolic process, pectin metabolic process and cutin biosynthesis may also contribute to drought tolerance of S. tamariscina by cuticle defense. Drought-responsive genes encoding protein kinases, calcium sensors, transcription factors (TFs) and plant hormones also help to drought resistance of S. tamariscina. The preliminary validation experiments were performed and the results were consistent with our hypothetical integrated regulatory network. The results of this study provide candidate resurrection genes and an integrated regulatory network for further studies on the molecular mechanisms of stress tolerance in S. tamariscina.
Klíčová slova:
Antioxidants – Dehydration (medicine) – Drought adaptation – Gene expression – Plant resistance to abiotic stress – Protein kinases – Trehalose – Water resources
Zdroje
1. Banks JA (2009) Selaginella and 400 million years of separation. Annu Rev Plant Biol 60: 223–238. doi: 10.1146/annurev.arplant.59.032607.092851 19575581
2. Gu W, Song J, Cao Y, Sun Q, Yao H, et al. (2013) Application of the ITS2 Region for Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta. PLoS One 8: e67818. doi: 10.1371/journal.pone.0067818 23826345
3. Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, et al. (2011) The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332: 960–963. doi: 10.1126/science.1203810 21551031
4. Petersen KB, Burd M (2018) The adaptive value of heterospory: Evidence from Selaginella. Evolution 72: 1080–1091. doi: 10.1111/evo.13484 29645092
5. Heo JK, Nguyen PH, Kim WC, Phuc NM, Liu KH (2017) Inhibitory Effect of Selaginellins from Selaginella tamariscina (Beauv.) Spring against Cytochrome P450 and Uridine 5'-Diphosphoglucuronosyltransferase Isoforms on Human Liver Microsomes. Molecules 22.
6. Zheng XK, Wang WW, Zhang L, Su CF, Wu YY, et al. (2013) Antihyperlipidaemic and antioxidant effect of the total flavonoids in Selaginella tamariscina (Beauv.) Spring in diabetic mice. J Pharm Pharmacol 65: 757–766. doi: 10.1111/jphp.12035 23600394
7. Zheng XK, Zhang L, Wang WW, Wu YY, Zhang QB, et al. (2011) Anti-diabetic activity and potential mechanism of total flavonoids of Selaginella tamariscina (Beauv.) Spring in rats induced by high fat diet and low dose STZ. J Ethnopharmacol 137: 662–668. doi: 10.1016/j.jep.2011.06.018 21718776
8. Dat LD, Zhao BT, Hung ND, Lee JH, Min BS, et al. (2017) Lignan derivatives from Selaginella tamariscina and their nitric oxide inhibitory effects in LPS-stimulated RAW 264.7 cells. Bioorg Med Chem Lett 27: 524–529. doi: 10.1016/j.bmcl.2016.12.028 28038832
9. Li X, Liu S, Wang Q, Wu H, Wan Y (2019) The effects of environmental light on the reorganization of chloroplasts in the resurrection of Selaginella tamariscina. Plant Signal Behav 14: 1621089. doi: 10.1080/15592324.2019.1621089 31131691
10. Liu MS, Chien CT, Lin TP (2008) Constitutive components and induced gene expression are involved in the desiccation tolerance of Selaginella tamariscina. Plant Cell Physiol 49: 653–663. doi: 10.1093/pcp/pcn040 18326542
11. Agduma AR, Sese MD (2016) Cellular Biochemical Changes in Selaginella tamariscina (Beauv.) Spring and Sellaginella plana (Desv. ex Poir.) Heiron. as Induced by Desiccation. Trop Life Sci Res 27: 37–52. doi: 10.21315/tlsr2016.27.2.4 27688850
12. Wang X, Chen S, Zhang H, Shi L, Cao F, et al. (2010) Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis. J Proteome Res 9: 6561–6577. doi: 10.1021/pr100767k 20923197
13. Yobi A, Wone BW, Xu W, Alexander DC, Guo L, et al. (2012) Comparative metabolic profiling between desiccation-sensitive and desiccation-tolerant species of Selaginella reveals insights into the resurrection trait. Plant J 72: 983–999. doi: 10.1111/tpj.12008 23061970
14. Yobi A, Wone BW, Xu W, Alexander DC, Guo L, et al. (2013) Metabolomic profiling in Selaginella lepidophylla at various hydration states provides new insights into the mechanistic basis of desiccation tolerance. Mol Plant 6: 369–385. doi: 10.1093/mp/sss155 23239830
15. Zhu Y, Chen L, Zhang C, Hao P, Jing X, et al. (2017) Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii. BMC Genomics 18: 1042. doi: 10.1186/s12864-016-3266-1 28198676
16. Carey RE, Hepler NK, Cosgrove DJ (2013) Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. BMC Plant Biol 13: 4. doi: 10.1186/1471-2229-13-4 23286898
17. Xu Z, Xin T, Bartels D, Li Y, Gu W, et al. (2018) Genome Analysis of the Ancient Tracheophyte Selaginella tamariscina Reveals Evolutionary Features Relevant to the Acquisition of Desiccation Tolerance. Mol Plant 11: 983–994. doi: 10.1016/j.molp.2018.05.003 29777775
18. Ksouri N, Jimenez S, Wells CE, Contreras-Moreira B, Gogorcena Y (2016) Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. Front Plant Sci 7: 1715. doi: 10.3389/fpls.2016.01715 27933070
19. Wang X, Guan Y, Zhang D, Dong X, Tian L, et al. (2017) A beta-Ketoacyl-CoA Synthase Is Involved in Rice Leaf Cuticular Wax Synthesis and Requires a CER2-LIKE Protein as a Cofactor. Plant Physiol 173: 944–955. doi: 10.1104/pp.16.01527 27913740
20. Lee SB, Jung SJ, Go YS, Kim HU, Kim JK, et al. (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60: 462–475. doi: 10.1111/j.1365-313X.2009.03973.x 19619160
21. Lv X, Li H, Chen X, Xiang X, Guo Z, et al. (2018) The Role of Calcium-dependent Protein Kinase in Hydrogen Peroxide, Nitric Oxide and ABA-dependent Cold Acclimation. J Exp Bot.
22. Manishankar P, Wang N, Koster P, Alatar AA, Kudla J (2018) Calcium Signaling during Salt Stress and in the Regulation of Ion Homeostasis. J Exp Bot.
23. Ji T, Li S, Huang M, Di Q, Wang X, et al. (2017) Overexpression of Cucumber Phospholipase D alpha Gene (CsPLDalpha) in Tobacco Enhanced Salinity Stress Tolerance by Regulating Na(+)-K(+) Balance and Lipid Peroxidation. Front Plant Sci 8: 499. doi: 10.3389/fpls.2017.00499 28439282
24. Yuan L, Mao X, Zhao K, Ji X, Ji C, et al. (2017) Characterisation of phospholipid: diacylglycerol acyltransferases (PDATs) from Camelina sativa and their roles in stress responses. Biol Open 6: 1024–1034. doi: 10.1242/bio.026534 28679505
25. Phimchan P, Chanthai S, Bosland PW, Techawongstien S (2014) Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in capsicum under drought stress. J Agric Food Chem 62: 7057–7062. doi: 10.1021/jf4051717 24984087
26. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, et al. (2019) Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24.
27. Dilshad E, Ismail H, Haq IU, Cusido RM, Palazon J, et al. (2016) Rol genes enhance the biosynthesis of antioxidants in Artemisia carvifolia Buch. BMC Plant Biol 16: 125. doi: 10.1186/s12870-016-0811-7 27251864
28. Mehta RH, Ponnuchamy M, Kumar J, Reddy NR (2017) Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Funct Integr Genomics 17: 1–25. doi: 10.1007/s10142-016-0523-y 27709374
29. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33: 453–467. doi: 10.1111/j.1365-3040.2009.02041.x 19712065
30. Vandelle E, Vannozzi A, Wong D, Danzi D, Digby AM, et al. (2018) Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. Plant Physiol Biochem 129: 221–237. doi: 10.1016/j.plaphy.2018.06.003 29908490
31. Munir S, Liu H, Xing Y, Hussain S, Ouyang B, et al. (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6: 31772. doi: 10.1038/srep31772 27546315
32. Kwon Y, Kim SH, Jung MS, Kim MS, Oh JE, et al. (2007) Arabidopsis hot2 encodes an endochitinase-like protein that is essential for tolerance to heat, salt and drought stresses. Plant J 49: 184–193. doi: 10.1111/j.1365-313X.2006.02950.x 17156413
33. Brown DB, Forsberg LS, Kannenberg EL, Carlson RW (2012) Characterization of galacturonosyl transferase genes rgtA, rgtB, rgtC, rgtD, and rgtE responsible for lipopolysaccharide synthesis in nitrogen-fixing endosymbiont Rhizobium leguminosarum: lipopolysaccharide core and lipid galacturonosyl residues confer membrane stability. J Biol Chem 287: 935–949. doi: 10.1074/jbc.M111.311571 22110131
34. Zanella M, Borghi GL, Pirone C, Thalmann M, Pazmino D, et al. (2016) beta-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J Exp Bot 67: 1819–1826. doi: 10.1093/jxb/erv572 26792489
35. Liu X, Fu L, Qin P, Sun Y, Liu J, et al. (2019) Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene 710: 210–217. doi: 10.1016/j.gene.2019.06.006 31176733
36. Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296: 52–59. doi: 10.1111/j.1574-6968.2009.01614.x 19459961
37. Lin Q, Yang J, Wang Q, Zhu H, Chen Z, et al. (2019) Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol 19: 381. doi: 10.1186/s12870-019-1986-5 31477017
38. Vilchez JI, Garcia-Fontana C, Roman-Naranjo D, Gonzalez-Lopez J, Manzanera M (2016) Plant Drought Tolerance Enhancement by Trehalose Production of Desiccation-Tolerant Microorganisms. Front Microbiol 7: 1577. doi: 10.3389/fmicb.2016.01577 27746776
39. Furuki T, Sakurai M (2018) Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. Adv Exp Med Biol 1081: 271–286. doi: 10.1007/978-981-13-1244-1_15 30288715
40. Li J, Ban L, Wen H, Wang Z, Dzyubenko N, et al. (2015) An aquaporin protein is associated with drought stress tolerance. Biochem Biophys Res Commun 459: 208–213. doi: 10.1016/j.bbrc.2015.02.052 25701792
41. Zhou S, Hu W, Deng X, Ma Z, Chen L, et al. (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7: e52439. doi: 10.1371/journal.pone.0052439 23285044
42. Huang C, Zhou S, Hu W, Deng X, Wei S, et al. (2014) The wheat aquaporin gene TaAQP7 confers tolerance to cold stress in transgenic tobacco. Z Naturforsch C 69: 142–148. doi: 10.5560/znc.2013-0079 24873035
43. Bi H, Kovalchuk N, Langridge P, Tricker PJ, Lopato S, et al. (2017) The impact of drought on wheat leaf cuticle properties. BMC Plant Biol 17: 85. doi: 10.1186/s12870-017-1033-3 28482800
44. Weidenbach D, Jansen M, Bodewein T, Nagel KA, Schaffrath U (2015) Shoot and root phenotyping of the barley mutant kcs6 (3-ketoacyl-CoA synthase6) depleted in epicuticular waxes under water limitation. Plant Signal Behav 10: 1–3. 25876181
45. Cho SK, Kim JE, Park JA, Eom TJ, Kim WT (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Lett 580: 3136–3144. doi: 10.1016/j.febslet.2006.04.062 16684525
46. Choi JY, Seo YS, Kim SJ, Kim WT, Shin JS (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Rep 30: 867–877. doi: 10.1007/s00299-010-0989-3 21207033
47. Plancot B, Gugi B, Mollet JC, Loutelier-Bourhis C, Ramasandra Govind S, et al. (2019) Desiccation tolerance in plants: Structural characterization of the cell wall hemicellulosic polysaccharides in three Selaginella species. Carbohydr Polym 208: 180–190. doi: 10.1016/j.carbpol.2018.12.051 30658789
48. Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13: 264–271. 12018849
49. Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, et al. (2005) Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44: 361–371. doi: 10.1111/j.1365-313X.2005.02536.x 16236147
50. Wu F, Sheng P, Tan J, Chen X, Lu G, et al. (2015) Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J Exp Bot 66: 271–281. doi: 10.1093/jxb/eru417 25385766
51. Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, et al. (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24: 2262–2278. doi: 10.1105/tpc.112.096677 22693282
52. Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152: 876–890. doi: 10.1104/pp.109.149856 20007444
53. Ye J, Yang H, Shi H, Wei Y, Tie W, et al. (2017) The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress. Sci Rep 7: 14939. doi: 10.1038/s41598-017-13988-8 29097722
54. Rampino P, De Pascali M, De Caroli M, Luvisi A, De Bellis L, et al. (2017) Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains. Plant Physiol Biochem 120: 223–231. doi: 10.1016/j.plaphy.2017.10.010 29065389
55. Mittal S, Mallikarjuna MG, Rao AR, Jain PA, Dash PK, et al. (2017) Comparative Analysis of CDPK Family in Maize, Arabidopsis, Rice, and Sorghum Revealed Potential Targets for Drought Tolerance Improvement. Front Chem 5: 115. doi: 10.3389/fchem.2017.00115 29312925
56. Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148: 1953–1963. doi: 10.1104/pp.108.126813 18945933
57. Islam MS, Wang MH (2009) Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato. BMB Rep 42: 611–616. doi: 10.5483/bmbrep.2009.42.9.611 19788864
58. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292–1309. doi: 10.1105/tpc.105.035881 16617101
59. Li K, Xing C, Yao Z, Huang X (2017) PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotechnol J 15: 1186–1203. doi: 10.1111/pbi.12708 28190292
60. Kour S, Zhawar VK (2018) ABA regulation of post-germination desiccation tolerance in wheat cultivars contrasting in drought tolerance. An Acad Bras Cienc 90: 1493–1501. doi: 10.1590/0001-3765201820170632 29898108
61. Bhalothia P, Sangwan C, Alok A, Mehrotra S, Mehrotra R (2016) PP2C-like Promoter and Its Deletion Variants Are Induced by ABA but Not by MeJA and SA in Arabidopsis thaliana. Front Plant Sci 7: 547. doi: 10.3389/fpls.2016.00547 27200023
62. Pilati S, Bagagli G, Sonego P, Moretto M, Brazzale D, et al. (2017) Abscisic Acid Is a Major Regulator of Grape Berry Ripening Onset: New Insights into ABA Signaling Network. Front Plant Sci 8: 1093. doi: 10.3389/fpls.2017.01093 28680438
63. Olsson C, Genheden S, Garcia-Sakai V, Swenson J (2019) Mechanism of Trehalose Induced Protein Stabilization from Neutron Scattering and Modeling. J Phys Chem B.
64. Olsson C, Jansson H, Swenson J (2016) The Role of Trehalose for the Stabilization of Proteins. J Phys Chem B 120: 4723–4731. doi: 10.1021/acs.jpcb.6b02517 27135987
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy