Association between trunk and gluteus muscle size and long jump performance
Autoři:
Katsuki Takahashi aff001; Taku Wakahara aff002
Působiště autorů:
Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
aff001; Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
aff002; Human Performance Laboratory, Waseda University, Saitama, Japan
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225413
Souhrn
The present study aimed to examine the sizes of trunk and gluteus muscles in long jumpers and its relation to long jump performance. Twenty-three male long jumpers (personal best record in long jump: 653–788 cm) and 22 untrained men participated in the study. T1-weighted magnetic resonance images of the trunk and hip were obtained to determine the cross-sectional areas of the rectus abdominis, internal and external obliques and transversus abdominis, psoas major, quadratus lumborum, erector spinae and multifidus, iliacus, gluteus maximus, and gluteus medius and minimus. The cross-sectional areas of individual trunk and gluteus muscles relative to body mass were significantly larger in the long jumpers than in untrained men (P < 0.001, Cohen’s d = 1.3–4.3) except for the gluteus medius and minimus. The relative cross-sectional area of the rectus abdominis of takeoff leg side was significantly correlated with their personal best record for the long jump (r = 0.674, corrected P = 0.004). Stepwise multiple regression analysis selected relative cross-sectional areas of the rectus abdominis and iliacus and the personal best record in 100-m sprint to predict the long jump distance (standard error of estimate = 22.6 cm, adjusted R2 = 0.763). The results of the multiple regression analysis demonstrated that the rectus abdominis and iliacus size were associated with long jump performance independently of sprint running capacity, suggesting the importance of these muscles in achieving high performance in the long jump.
Klíčová slova:
Abdominal muscles – Fats – Hip – Legs – Muscle analysis – Regression analysis – Running – Torque
Zdroje
1. Hay JG, Miller JA, Canterna RW. The techniques of elite male long jumpers. J Biomech. 1986;19: 855–856. doi: 10.1016/0021-9290(86)90136-3 3782168
2. Béres S, Csende Z, Lees A, Tihanyi J. Prediction of jumping distance using a short approach model. Kinesiology. 2014;46(1): 88–96.
3. Lees A, Graham-Smith P, Fowler N. A biomechanical analysis of the last stride touchdown and takeoff characteristics of the men’s long jump. J Appl Biomech. 1994;10: 61–61.
4. Johnson MD, Buckley JG. Muscle power patterns in the mid-accrleration phase of sprinting. J Sports Sci. 2001;19: 263–272. doi: 10.1080/026404101750158330 11311024
5. Dorn TW, Schache AG, Pandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215(11): 1944–1956.
6. Copaver K, Hertogh C, Hue O. The effects of psoas major and lumbar lordosis on hip flexion and sprint performance. Res Q Exerc Sport. 2012;83(2): 160–167. doi: 10.1080/02701367.2012.10599846 22808701
7. Sugisaki N, Kobayashi K, Tsuchie H, Kanehisa H. Associations Between Individual Lower Limb Muscle Volumes and 100-m Sprint Time in Male Sprinters. Int J Sports Physiol Perform. 2018;13(2): 214–219. doi: 10.1123/ijspp.2016-0703 28605265
8. Graham-Smith P, Lees A. A three-dimensional kinematic analysis of the long jump take-off. J Sports Sci. 2005;23(9): 891–903. doi: 10.1080/02640410400022169 16195041
9. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3): 189–198. doi: 10.2165/00007256-200636030-00001 16526831
10. Hodges PW, Richardson CA. Contraction of the abdominal muscles associated with movement of the lower limb. Phys Ther. 1997;77(2): 132–142. doi: 10.1093/ptj/77.2.132 9037214
11. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5): 316–325. doi: 10.5435/00124635-200509000-00005 16148357
12. Tayashiki K, Hirata K, Ishida K, Kanehisa H, Miyamoto N. Associations of maximal voluntary isometric hip extension torque with muscle size of hamstring and gluteus maximus and intra-abdominal pressure. Eur J Appl Physiol. 2017;117(6): 1267–1272. doi: 10.1007/s00421-017-3617-x 28429109
13. Cresswell AG. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol Occup Physiol. 1993;66(4): 315–320. doi: 10.1007/bf00237775 8495692
14. Cresswell AG, Oddsson L, Thorstensson A. The influence of sudden perturbations on trunk muscle activity and intra-abdominal pressure while standing. Exp Brain Res. 1994;98(2): 336–341. doi: 10.1007/bf00228421 8050518
15. Lieber RL, Fridén J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23(11): 1647–1666. doi: 10.1002/1097-4598(200011)23:11<1647::aid-mus1>3.0.co;2-m 11054744
16. Ikai M, Fukunaga T. Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol. 1968;26(1): 26–32. doi: 10.1007/bf00696087 5700894
17. Maughan RJ, Watson JS, Weir J. Strength and cross‐sectional area of human skeletal muscle. J Physiol. 1983;338(1): 37–49.
18. Trezise J, Collier N, Blazevich AJ. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur J Appl Physiol. 2016;116(6): 1159–1177. doi: 10.1007/s00421-016-3352-8 27076217
19. Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47(3): 631–638. doi: 10.1016/j.jbiomech.2013.12.002 24368144
20. Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, Cutright-Smith E. The human gluteus maximus and its role in running. J Exp Biol. 2006;209(11): 2143–2155.
21. Åstrand P-O, Rodahl K, Dahl HA, Strømme SB. Body Dimensions and muscular exercise. In: Textbook of work physiology. 4th edition. IL: Human Kinetics; 2003. pp. 299–312.
22. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995: 289–300.
23. Altman DG, Bland JM. How to obtain the confidence interval from a P value. BMJ. 2011;343: d2090. doi: 10.1136/bmj.d2090 21824904
24. Jorgensen MJ, Marras WS, Granata KP, Wiand JW. MRI-derived moment-arms of the female and male spine loading muscles. Clin Biomech. 2001;16(3): 182–193.
25. Hay JG. Citius altius longius (faster higher longer): The biomechanics of jumping for distance. J Biomech. 1993;26(Suppl 1): 7–21.
26. Muraki Y, Ae M, Koyama H, Yokozawa T. Joint torque and power of the takeoff leg in the long jump. Int J Sport Health Sci. 2008;6: 21–32.
27. Stefanyshyn DJ, Nigg BM. Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps. J Sports Sci. 1998;16: 177–186. doi: 10.1080/026404198366885 9531006
28. Andersson E, Oddsson L, Grundström H, Thorstensson A. The role of the psoas and iliacus muscles for stability and movement of the lumbar spine pelvis and hip. Scand J Med Sci Sports. 1995;5(1): 10–16. doi: 10.1111/j.1600-0838.1995.tb00004.x 7882121
29. Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol. 2001;172(4): 249–255.
30. Čoh M, Milanović D, Kampmiller T. Morphologic and kinematic characteristics of elite sprinters. Coll Antropol. 2001;25(2): 605–610. 11811291
31. Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, et al. How 100‐m event analyses improve our understanding of world‐class men's and women's sprint performance. Scand J Med Sci Sports. 2017;27(1): 45–54. doi: 10.1111/sms.12627 26644061
32. Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3(8): 689–699. doi: 10.1242/bio.20148284 24996923
33. Loenneke JP, Buckner SL, Dankel SJ, Abe T. Exercise-induced changes in muscle size do not contribute to exercise-induced changes in muscle strength. Sports Med. 2019;49(7): 987–991. doi: 10.1007/s40279-019-01106-9 31020548
34. Taber CB, Vigotsky A, Nuckols G, Haun CT. Exercise-induced myofibrillar hypertrophy is a contributory cause of gains in muscle strength. Sports Med. 2019;49(7): 993–997. doi: 10.1007/s40279-019-01107-8 31016546
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy