Latitudinal gradient of cyanobacterial diversity in tidal flats
Autoři:
Janina C. Vogt aff001; Raeid M. M. Abed aff002; Dirk C. Albach aff001; Katarzyna A. Palinska aff003
Působiště autorů:
Institute for Biology and Environmental Science (IBU), Biodiversity and Evolution of Plants, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
aff001; Biology Department, College of Science, Sultan Qaboos University, Al Khoud, Muscat, Sultanate of Oman
aff002; Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdansk, al. Marszałka Józefa Piłsudskiego 46, Gdynia, Poland
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224444
Souhrn
Latitudinal diversity gradients are well-known for plants and animals, but only recently similar patterns have been described for some specific microbial communities in distinct habitats. Although microbial diversity is well-investigated worldwide, most of the studies are spatially too restricted to allow general statements about global diversity patterns. Additionally, methodological differences make it hard and often impossible to compare several studies. This study investigated the cyanobacterial diversity in tidal flats along geographical and ecological gradients based on high-throughput sequencing of 16S rRNA gene fragments (Illumina MiSeq) and environmental data on a large spatial scale from the subtropics to the Arctic. Latitude and strongly correlated environmental parameters (e.g. temperature) were identified as important drivers of cyanobacterial diversity on global scale resulting in a latitudinal diversity gradient similar to that known from plants and animals. Other non-correlated parameters (e.g. grain size) were shown to be more important on local scales, although no consistent pattern occurred across different locations. Among a total number of 989 operational taxonomic units (OTUs) only one cosmopolitan (classified as Coleofasciculus chthonoplastes), but many location-specific and putative endemic ones (78%) were detected. High proportions of rare members of the community (up to 86%) were found in all samples. Phylogenetic beta diversity was shown to be influenced by the developmental stage of the mat community becoming increasingly similar with increasing stabilization.
Klíčová slova:
Biogeography – Community structure – Latitude – Phylogenetics – Phylogeography – Sediment – Sequence databases – Shannon index
Zdroje
1. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A. 2006;103(32):12115–20. doi: 10.1073/pnas.0605127103 16880384
2. Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci U S A. 2007;104(27):11436–40. doi: 10.1073/pnas.0611525104 17592124
3. Ramirez KS, Knight CG, de Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2017;3(2):189–96. doi: 10.1038/s41564-017-0062-x 29158606
4. Beijerinck MW. De infusies en de ontdekking der backteriën. In: Jaarboek van de Koninklijke Akademie voor Wetenschappen. Amsterdam, The Netherlands: Müller; 1913. p. 119–140.
5. Baas-Becking LGM. Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon; 1934. (Diligentia-voordrachten).
6. Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.
7. Patterson DJ, Lee WJ. Geographic distribution and diversity of free living heterotrophic flagellates. In: Leadbetter BSC, Green JC, editors. The Flagellates—Unity, Diversity and Evolution. London: Taylor & Francis; 2000. p. 269–287.
8. Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL. Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature. 2000;405(6782):43–7. doi: 10.1038/35011002 10811211
9. Finlay BJ. Global dispersal of free-living microbial eukaryote species. Science. 2002;296:1061–3. doi: 10.1126/science.1070710 12004115
10. Garcia-Pichel F, Prufert-Bebout L, Muyzer G. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol. 1996;62(9):3284–91. 8795218
11. Hoffmann L. Geographic distribution of freshwater blue-green algae. Hydrobiologia. 1996;336:33–40.
12. Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73(15):4751–9. doi: 10.1128/AEM.02945-06 17557856
13. Padisák J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subbu Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch fur Hydrobiol Suppl Monogr Stud. 1997;107(4):563–93.
14. Gugger M, Molica R, Le Berre B, Dufour P, Bernard C, Humbert J-F. Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents. Appl Environ Microbiol. 2005;71(2):1097–100. doi: 10.1128/AEM.71.2.1097-1100.2005 15691973
15. Antunes JT, Leão PN, Vasconcelos VM. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol. 2015;6(473):1–13.
16. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One. 2011;6(5):e19561. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.001956117. doi: 10.1371/journal.pone.0019561 21573169
17. Moreira C, Spillane C, Fathalli A, Vasconcelos V, Antunes A. African origin and europe-mediated global dispersal of the cyanobacterium Microcystis aeruginosa. Curr Microbiol. 2014;69(5):628–33. doi: 10.1007/s00284-014-0628-2 24952206
18. Bik HM, Sung W, De Ley P, Baldwin JG, Sharma J, Rocha-Olivares A, et al. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol Ecol. 2012;21(5):1048–59. doi: 10.1111/j.1365-294X.2011.05297.x 21985648
19. Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7(3):652–9. doi: 10.1038/ismej.2012.147 23235291
20. Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10(3):596–608. doi: 10.1038/ismej.2015.137 26251871
21. Boenigk J, Wodniok S, Bock C, Beisser D, Hempel C, Grossmann L, et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scalе. Metabarcoding and Metagenomics. 2018;2:e21519. Available from: https://mbmg.pensoft.net/articles.php?id=21519
22. Ribeiro KF, Duarte L, Oliveira L. Everything is not everywhere: a tale on the biogeography of cyanobacteria. Hydrobiologia. 2018;820(1):23–48.
23. Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5(8):650–9. 12871232
24. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol. 2006;57(2):272–89. doi: 10.1111/j.1574-6941.2006.00110.x 16867145
25. Humboldt A von, Bonpland A. Ideen zu einer Geographie der Pflanzen: nebst einem Naturgemälde der Tropenländer. Tübingen, Paris: F. G. Cotta, F.Schoell; 1807. Available from: https://www.biodiversitylibrary.org/item/37871
26. Wallace AR. Palm Trees of the Amazon and Their Uses. London: John Van Voorst; 1853.
27. Wallace AR. The geographical distribution of animals. New York: Harper & Brothers, Publishers, Franklin Sqare; 1876.
28. Darwin C. The Origin of Species: And, The Voyage of the Beagle. Alfred A. Knopf; 1859. Available from: https://books.google.de/books?id=arm7fmLePg8C
29. Schall JJ, Pianka ER. Geographical Trends in Numbers of Species. Science. 1978;201(4357):679–86. doi: 10.1126/science.201.4357.679 17750221
30. Currie DJ, Paquin V. Large-scale biogeographical patterns of species richness of trees. Nature. 1987;329:326–7.
31. Mutke J, Barthlott W. Patterns of vascular plant diversity at continental to global scales. Biol Skr. 2005;55:521–37.
32. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4(2):102–12. doi: 10.1038/nrmicro1341 16415926
33. Ramette A, Tiedje JM. Biogeography: An emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol. 2007;53(2):197–207. doi: 10.1007/s00248-005-5010-2 17106806
34. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10(7):497–506. doi: 10.1038/nrmicro2795 22580365
35. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551(7681):457–63. doi: 10.1038/nature24621 29088705
36. Gaston KJ. Global patterns in biodiversity. Nature. 2000;405(6783):220–7. doi: 10.1038/35012228 10821282
37. Willig MR, Kaufman DM, Stevens RD. Latitudinal Gradients of Biodiversity: Pattern, Process, Scale, and Synthesis. Annu Rev Ecol Evol Syst. 2003;34(1):273–309.
38. Hillebrand H. On the generality of the latitudinal diversity gradient. Evaluation. 2004;163(2):192–211.
39. Jablonski D, Roy K, Valentine JW. Out of the Tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science. 2006;314:102–6. doi: 10.1126/science.1130880 17023653
40. Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci U S A. 2007;104(14):5925–30. doi: 10.1073/pnas.0608361104 17379667
41. Buckley LB, Davies TJ, Ackerly DD, Kraft NJB, Harrison SP, Anacker BL, et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc R Soc B Biol Sci. 2010;277(1691):2131–8.
42. Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun. 2016;7(13736). Available from: https://www.nature.com/articles/ncomms13736
43. Willig MR, Presley SJ. Latitudinal Gradients of Biodiversity. In: Reference Module in Life Sciences. Elsevier; 2017. Available from: http://www.sciencedirect.com/science/article/pii/B9780128096338021749
44. Mittelbach GG, Schemske DW, Cornell H V., Allen AP, Brown JM, Bush MB, et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol Lett. 2007;10(4):315–31. doi: 10.1111/j.1461-0248.2007.01020.x 17355570
45. Schluter D. Speciation, Ecological Opportunity, and Latitude. Am Nat. 2016;187(1):1–18. doi: 10.1086/684193 26814593
46. Cutter AD, Gray JC. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution (NY). 2016;70(10):2171–85.
47. Kinlock NL, Prowant L, Herstoff EM, Foley CM, Akin-Fajiye M, Bender N, et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob Ecol Biogeogr. 2018;27(1):125–41.
48. Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T. Distance decay of similarity in freshwater communities: Do macro- and microorganisms follow the same rules? Glob Ecol Biogeogr. 2012;21(3):365–75.
49. Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol. 2007;16(4):867–80. doi: 10.1111/j.1365-294X.2006.03189.x 17284217
50. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol. 2007;9(11):2670–82. doi: 10.1111/j.1462-2920.2007.01379.x 17922752
51. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown M V., Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci U S A. 2008;105(22):7774–8. doi: 10.1073/pnas.0803070105 18509059
52. Andam C, Doroghazi J, Campbell A, Kelly P, Choudoir M, Buckley D. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces. mBio. 2016;7(2):e02200–15. Available from: https://mbio.asm.org/content/7/2/e02200-15 doi: 10.1128/mBio.02200-15 27073097
53. Crump BC, Hopkinson CS, Sogin ML, Hobbie JE. Microbial Biogeography along an Estuarine Salinity Gradient: Combined Influences of Bacterial Growth and Residence Time. Appl Environ Microbiol. 2004;70(3):1494–505. doi: 10.1128/AEM.70.3.1494-1505.2004 15006771
54. Namsaraev Z, Mano MJ, Fernandez R, Wilmotte A. Biogeography of terrestrial cyanobacteria from Antarctic ice-free areas. Ann Glaciol. 2010;51(56):171–7.
55. Dyer KR, Christie MC, Wright EW. The classification of intertidal mudflats. Coast Shelf Res. 2000;20:1039–60.
56. Stutz ML, Pilkey OH. Global distribution and morphology of deltaic barrier island systems. J Coast Res. 2002;707(36):694–707.
57. Daidu F, Yuan W, Min L. Classifications, sedimentary features and facies associations of tidal flats. J Palaeogeogr. 2013;2(1):66–80.
58. Stal LJ, van Gemerden H, Krumbein WE. Structure and development of a benthic marine microbial mat. FEMS Microbiol Ecol. 1985;31(2):111–25.
59. van Gemerden H. Microbial mats: A joint venture. Mar Geol. 1993;113(1–2):3–25.
60. Stal LJ. Cyanobacterial mats and stromatolites. In: Whitton BA, editor. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer Netherlands; 2012. p. 65–125.
61. Bolhuis H, Cretoiu MS, Stal LJ. Molecular ecology of microbial mats. FEMS Microbiol Ecol. 2014;90(2):335–50. doi: 10.1111/1574-6941.12408 25109247
62. Vogt JC, Albach DC, Palinska KA. Cyanobacteria of the Wadden Sea: seasonality and sediment influence on community composition. Hydrobiologia. 2018;811(1):103–17.
63. Vogt JC, Abed RMM, Albach DC, Palinska KA. Bacterial and archaeal diversity in hypersaline cyanobacterial mats along a transect in the intertidal flats of the Sultanate of Oman. Microb Ecol. 2018;75:331–47. doi: 10.1007/s00248-017-1040-9 28736793
64. Abed RMM, Kohls K, Schoon R, Scherf AK, Schacht M, Palinska KA, et al. Lipid biomarkers, pigments and cyanobacterial diversity of microbial mats across intertidal flats of the arid coast of the Arabian Gulf (Abu Dhabi, UAE). FEMS Microbiol Ecol. 2008;65(3):449–62. doi: 10.1111/j.1574-6941.2008.00537.x 18637042
65. Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology. 2009;7(1):82–96. doi: 10.1111/j.1472-4669.2008.00187.x 19200148
66. Sarazin G, Michard G, Prevot F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999;33(1):290–4.
67. Benesch R, Mangelsdorf P. Eine Methode zur colorimetrischen Bestimmung von Ammoniak in Meerwasser. Helgoländer wissenschaftliche Meeresuntersuchungen. 1972;23:365–75.
68. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide Biol Chem. 2001;5(1):62–71.
69. Schnetger B, Lehners C. Determination of nitrate plus nitrite in small volume marine water samples using vanadium(III)chloride as a reduction agent. Mar Chem. 2014;160:91–8.
70. O’Dell JW. Method 365.1, Revision 2.0: Determination of phosphorus by semi-automated colorimetry. EPA—United States Environ Prot Agency. 1993;1–15.
71. Itaya K, Ul M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acte. 1966;14(3):361–6.
72. Altmann HJ, Fürstenau E, Gielewski A, Scholz L. Photometrische Bestimmung kleiner Phosphatmengen mit Malachitgrün. Fresenius’ Zeitschrift für Anal Chemie. 1971;256:274–6.
73. Nübel U, Garcia-Pichel F, Muyzer G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol. 1997;63(8):3327–32. 9251225
74. Wilmotte A, Demonceau C, Goffart A, Hecq J-H, Demoulin V, Crossley AC. Molecular and pigment studies of the picophytoplankton in a region of the Southern Ocean (42–54°S, 141–144°E) in March 1998. Deep Sea Res Part II Top Stud Oceanogr. 2002;49(16):3351–63.
75. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41. doi: 10.1128/AEM.01541-09 19801464
76. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531112/ doi: 10.1093/nar/gks1219 23193283
77. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200. doi: 10.1093/bioinformatics/btr381 21700674
78. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. Available from: https://peerj.com/articles/2584/ doi: 10.7717/peerj.2584 27781170
79. Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ. 2015;3:e1487. Available from: https://peerj.com/articles/1487/ doi: 10.7717/peerj.1487 26664811
80. Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol. 2000;7(1/2):203–14.
81. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. doi: 10.1093/bioinformatics/btu033 24451623
82. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335–7.
83. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. Available from: https://www.r-project.org/
84. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–4. doi: 10.1093/bioinformatics/btq166 20395285
85. Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10.
86. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and Community Ecology. Annu Rev Ecol Syst. 2002;33(1):475–505.
87. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from https://www.r-project.org/
88. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package (R package version 2.5–5); 2019. Available from https://cran.r-project.org/package=vegan
89. van den Boogaart KG, Tolosana-Delgado R. “compositions”: A unified R package to analyze compositional data. Comput. Geosci. 2008;34(4):320–338.
90. Billerbeck M, Røy H, Bosselmann K, Huettel M. Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar Coast Shelf Sci. 2007;71(3–4):704–16.
91. Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ Microbiol. 2009;11(4):823–32. doi: 10.1111/j.1462-2920.2008.01803.x 19021692
92. Mazard S, Ostrowski M, Partensky F, Scanlan DJ. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ Microbiol. 2012;14(2):372–86. doi: 10.1111/j.1462-2920.2011.02514.x 21651684
93. Rothrock MJ Jr, Garcia-Pichel F. Microbial diversity of benthic mats along a tidal desiccation gradient. Environ Microbiol. 2005;7(4):593–601. doi: 10.1111/j.1462-2920.2005.00728.x 15816936
94. Bolhuis H, Stal LJ. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 2011;5(11):1701–12. doi: 10.1038/ismej.2011.52 21544102
95. Bolhuis H, Fillinger L, Stal LJ. Coastal microbial mat diversity along a natural salinity gradient. PLoS One. 2013;8(5):e63166. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063166%0A%0A 23704895
96. Scholz B, Einarsson H. Microphytobenthic community composition of two sub-Arctic intertidal flats in Huna Bay (Northern Iceland). Eur J Phycol. 2015;50(2):182–206.
97. Zinger L, Amaral-Zettler LA, Fuhrman JA, Horner-Devine MC, Huse SM, Welch DBM, et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One. 2011;6(9):e24570. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0024570 21931760
98. Lacap-Bugler DC, Lee KK, Archer S, Gillman LN, Lau MCY, Leuzinger S, et al. Global diversity of desert hypolithic cyanobacteria. Front Microbiol. 2017;8(867):1–13.
99. Fine PVA. Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst. 2015;46(1):369–92.
100. Fischer AG. Latitudinal variations in organic diversity. Evolution (NY). 1960;14:64–81.
101. Pianka ER. Latitudinal gradients in species diversity: A review of concepts. Am Nat. 1966;100(910):33–46.
102. Currie DJ. Energy and large-scale patterns of animal- and plant-species richness. Am Nat. 1991;137(1):27–49.
103. Green J, Bohannan BJM. Spatial scaling of microbial biodiversity. Trends Ecol Evol. 2006;21(9):501–7. doi: 10.1016/j.tree.2006.06.012 16815589
104. Dvořák P, Poulíčková A, Hašler P, Belli M, Casamatta DA, Papini A. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers Conserv. 2015;24(4):739–57.
105. Angermeyer A, Crosby SC, Huber JA. Salt marsh sediment bacterial communities maintain original population structure after transplantation across a latitudinal gradient. PeerJ. 2018;6:e4735. Available from: https://peerj.com/articles/4735/ doi: 10.7717/peerj.4735 29736349
106. Echenique-Subiabre I, Zancarini A, Heath MW, Wood SA, Quiblier C, Humbert JF. Multiple processes acting from local to large geographical scales shape bacterial communities associated with Phormidium (cyanobacteria) biofilms in French and New Zealand rivers. Sci. Rep. 2018;8(1):1–12. doi: 10.1038/s41598-017-17765-5
107. Fenchel T, Finlay BJ. The ubiquity of small species: Patterns of local and global diversity. Bioscience. 2004;54(8):777.
108. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13(1):135–44. doi: 10.1111/j.1462-2920.2010.02315.x 21199253
109. Komárek J, Anagnostidis K. Süßwasserflora von Mitteleuropa, Bd. 19/2: Cyanoprokaryota. 2. Teil / 2nd part: Oscillatoriales. Vol. 49. Springer Spektrum; 2007.
110. Lennon JT, Jones SE. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9(2):119–30. doi: 10.1038/nrmicro2504 21233850
111. Sjöstedt J, Koch-Schmidt P, Pontarp M, Canbäck B, Tunlid A, Lundberg P, et al. Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl Environ Microbiol. 2012;78(5):1361–9. doi: 10.1128/AEM.05542-11 22194288
112. Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017;11(4):853–62. doi: 10.1038/ismej.2016.174 28072420
113. Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat. Commun. 2016;7:1–9.
114. Wang J, Soininen J, He J, Shen J. Phylogenetic clustering increases with elevation for microbes. Environ. Microbiol. Rep. 2012;4(2):217–26. doi: 10.1111/j.1758-2229.2011.00324.x 23757276
115. Stal LJ. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol J. 2003;20(5):463–78.
116. Krumbein WE, Paterson DM, Stal LJ. Biostabilization of Sediments. Krumbein WE, Paterson DM, Stal LJ, editors. Oldenburg: Bibliotheks- und Informationssystem der Universität Oldenburg (bis) Verlag; 1994.
117. Komárek J. 3—Coccoid and Colonial Cyanobacteria. In: Wehr JD, Sheath RG, editors. Freshwater Algae of North America. Burlington: Academic Press; 2003. p. 59–116. (Aquatic Ecology).
118. Oren A. Cyanobacteria in hypersaline environments: biodiversity and physiological properties. Biodivers Conserv. 2015;24(4):781–98.
119. Pessi IS, Maalouf P de C, IV HDL, Baurain D, Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats. J Phycol. 2016;52:356–68. doi: 10.1111/jpy.12399 27273529
120. Whitton BA. Ecology of cyanobacteria II: Their diversity in space and time. Whitton BA, editor. Springer Netherlands; 2012. XV, 760.
121. Wiens JJ, Graham CH. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu Rev Ecol Evol Syst. 2005;36(1):519–39.
122. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014;86(4):295–335.
123. Abed RMM, Klempová T, Gajdos P, Certík M. Bacterial diversity and fatty acid composition of hypersaline cyanobacterial mats from an inland desert wadi. J Arid Environ. 2015;115:81–9.
124. Garcia-Pichel F, Nübel U, Muyzer G. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol. 1998;169(6):469–82. doi: 10.1007/s002030050599 9575232
125. Silva SMF, Pienaar RN. Some Benthic Marine Cyanophyceae of Mauritius. Bot Mar. 2000;43(1):11–27.
126. Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D. Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology. 2004;2(4):261–8.
127. Komárek J, Elster J, Komárek O. Diversity of the cyanobacterial microflora of the northern part of James Ross Island, NW Weddell Sea, Antarctica. Polar Biol. 2008;31(7):853–65.
128. de Los Ríos A, Valea S, Ascaso C, Davila A, Kastovsky J, McKay CP, et al. Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol. 2010;13(2):79–89. doi: 10.2436/20.1501.01.113 20890842
129. Brandes M, Albach DC, Vogt JC, Mayland-Quellhorst E, Mendieta-Leiva G, Golubic S, et al. Supratidal extremophiles—Cyanobacterial diversity in the rock pools of the Croatian Adria. Microb Ecol. 2015;70(4):876–88. doi: 10.1007/s00248-015-0637-0 26048370
130. Palinska KA, Abed RMM, Vogt JC, Radtke G, Golubic S. Microbial endoliths on East Adriatic Limestone Coast: morphological vs. molecular diversity. Geomicrobiol J. 2017;34(10):903–15.
131. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33(5):917–41. doi: 10.1111/j.1574-6976.2009.00183.x 19453747
132. Komárek J. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota. 3. Teil / 3rd part: Heterocytous Genera. Vol. 49. Springer Spektrum; 2013. XVIII, 1131.
133. Soininen J. Macroecology of unicellular organisms—patterns and processes. Environ Microbiol Rep. 2012;4(1):10–22. doi: 10.1111/j.1758-2229.2011.00308.x 23757224
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF