Diminuendo al bottom—Clarifying the semantics of music notation by re-modeling
Autoři:
Markus Lepper aff001; Michael Oehler aff002; Hartmuth Kinzler aff002; Baltasar Trancón y Widemann aff001
Působiště autorů:
Semantics GmbH, Berlin, Germany
aff001; Osnabrück University – Institute for Musicology and Music Pedagogy, Osnabrück, Germany
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224688
Souhrn
One of many aspects of musical notation is that of a graphical language which strives to be totally precise, but falls short because it has been defined by historical evolution, cultural construction and de-central ramification. This article applies standard techniques for computer languages to reconstruct a precise model for the syntax and semantics of the historically grown notation systems, taking the conventional way of notating musical dynamics as a simple example. It turns out that no single such model is possible, but a multitude of incompatibles: some have fundamentally different evaluation algorithms, others only slightly different parameter settings. Musical practice is allowed to switch between these models without even noticing their existence, but science may need distinctness. This article constructs and demonstrates an extensible mathematical framework for their precise description and proposes an extensible nomenclature system as a basis for their application and discussion.
Klíčová slova:
Algorithms – Language – Mathematical models – Music perception – Programming languages – Semantics – Syntax – Computer modeling
Zdroje
1. Fletcher H, Munson WA. Relation between loudness and masking. The Journal of the Acoustical Society of America. 1937;9(1):1–10. doi: 10.1121/1.1915904
2. Stevens SS. The measurement of loudness. The Journal of the Acoustical Society of America. 1955;27(5):815–829. doi: 10.1121/1.1908048
3. Clark M Jr, Milner P. Dependence of timbre on the tonal loudness produced by musical instruments. Journal of the Audio Engineering Society. 1964;12(1).
4. Miśkiewicz A, Rakowski A. Loudness level versus sound-pressure level: A comparison of musical instruments. The Journal of the Acoustical Society of America. 1994;96(6):3375–3379. doi: 10.1121/1.411448
5. Vickers E. The loudness war: Background, speculation, and recommendations. In: Audio Engineering Society Convention 129. Audio Engineering Society; 2010.
6. Schneider A. Sensation of Sound Intensity and Perception of Loudness. In: Springer Handbook of Systematic Musicology. Springer; 2018. p. 727–745.
7. Fricke JP. Klangfarbendynamik in der Studioelektronik und bei elektronischen Musikinstrumenten. In: Bericht über die 10. Tonmeistertagung; 1975. p. 26–29.
8. Oehler M, Reuter C, Czedik-Eysenberg I. Dynamics and low-frequency ratio in popular music recordings since 1965. In: Audio Engineering Society Conference: 57th International Conference: The Future of Audio Entertainment Technology–Cinema, Television and the Internet. Audio Engineering Society; 2015.
9. Pätynen J, Lokki T. Perception of music dynamics in concert hall acoustics. The Journal of the Acoustical Society of America. 2016;140(5):3787–3798. doi: 10.1121/1.4967157 27908068
10. Lehne M, Rohrmeier M, Gollmann D, Koelsch. The influence of different structural features on felt musical tension in two piano pieces by Mozart and Mendelssohn. Music Perception: An Interdisciplinary Journal. 2013;31(2):171–185. doi: 10.1525/mp.2013.31.2.171
11. Johns UT. Exploring musical dynamics in therapeutic interplay with children: A multilayered method of microanalysis. Nordic Journal of Music Therapy. 2018;27(3):197–217. doi: 10.1080/08098131.2017.1421685
12. Nakamura T. The communication of dynamics between musicians and listeners through musical performance. Perception and psychophysics. 1987;41(6):525–533. doi: 10.3758/bf03210487 3615149
13. Huron D. The ramp archetype: A score-based study of musical dynamics in 14 piano composers. Psychology of Music. 1991;19(1):33–45. doi: 10.1177/0305735691191003
14. Godøy RI, Leman M, editors. Musical gestures: Sound, movement, and meaning. Routledge; 2010.
15. Bishop L, Bailes F, Dean RT. Performing musical dynamics: How crucial are musical imagery and auditory feedback for expert and novice musicians? Music Perception: An Interdisciplinary Journal. 2014;32(1):51–66. doi: 10.1525/mp.2014.32.1.51
16. Kosta K, Bandtlow OF, Chew E. A change-point approach towards representing musical dynamics. Mathematics and Computation in Music. 2015;9110:179–184. doi: 10.1007/978-3-319-20603-5_18
17. Grachten M, Cancino-Chacón, Gadermaier C E T, Widmer G. Toward computer-assisted understanding of dynamics in symphonic music. IEEE MultiMedia. 2017;24(1):36–46. doi: 10.1109/MMUL.2017.4
18. Schilling G. Musikalische dynamik, oder Die lehre vom vortrage in der musik: Ein lehr-, hand-und hülfsbuch für alle, die auf irgend eine weise praktisch musik treiben, künstler oder dilettanten, sänger oder instrumentalisten, lehrer und schüler. JC Krieger’sche buchhandlung; 1843.
19. Riemann H. Musikalische Dynamik und Agogik: Lehrbuch der musikalischen Phrasierung (Musical dynamics and agogics: Textbook on musical phrasing). Rahter; 1884.
20. Denecke HL. Die Kompositionslehre Hugo Riemanns: historisch und systematisch dargestellt [phdthesis]. Christian-Albrechts-Universität zu Kiel; 1937.
21. Elston A. On Musical Dynamics [phdthesis]. Harvard University; 1939.
22. Lissa Z. Aesthetic functions of silence and rests in music. The Journal of Aesthetics and Art Criticism. 1964;22(4):443–454. doi: 10.2307/427936
23. Firges J. Gradatio/Crescendo–Eine Geschichte der Steigerung. Transformationen rhetorischer und musikalischer Gradationsfiguren im 18. Jahrhundert. Rhetorik. 2014;33(1).
24. Rofe M. Dimensions of energy in Shostakovich’s symphonies. Routledge; 2016.
25. Losseff N, editor. Silence, music, silent music. Routledge; 2017.
26. Morris R. Notation is one thing, analysis another, musical experience a third: What can they have to do with one another? In: Clark S, Rehding A, editors. Music In Time. Harvard University Press; 2016. p. 71–107.
27. Aho A, Ullman J. Principles of Compiler Design. Addison Wesley; 1977.
28. Wexelblat R. History of Programming Languages. ACM Monograph Series. Academic Press; 1978.
29. Spivey JM. The Z Notation: A reference manual. International Series in Computer Science. Prentice Hall; 1988.
30. Ingarden R. Untersuchungen zur Ontologie der Künste. Tübingen: Max Niemeyer; 1962.
31. Kurkela K. Note and Tone: A Semantic Analysis of Conventional Music Notation. Helsinki University; 1986.
32. Chopin F. Sonaten (ed. by Theodor Kullak). Berlin: Schlesinger’sche Buch-und Musikhandlung; 1883.
33. Chopin F. Sonaten (eds. Scholtz H and von Pozniak B). Frankfurt, London, New York: C.F.Peters; 1948.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy