Ocean sound levels in the northeast Pacific recorded from an autonomous underwater glider
Autoři:
Joseph H. Haxel aff001; Haru Matsumoto aff001; Christian Meinig aff002; Gabriella Kalbach aff003; T.-K. Lau aff001; Robert P. Dziak aff004; Scott Stalin aff002
Působiště autorů:
Oregon State University and NOAA Pacific Marine Environmental Laboratory, Newport, Oregon, United States of America
aff001; NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, United States of America
aff002; Department of Natural Sciences, California State University of Monterey Bay, Marina, California, United States of America
aff003; NOAA Pacific Marine Environmental Laboratory, Newport, Oregon, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225325
Souhrn
Ocean gliders are a quiet and efficient mobile autonomous platform for passive acoustic monitoring and oceanographic measurements in remote marine environments. During July 20—August 6 2012, we used a Teledyne Webb Research Slocum G2 glider equipped with a hydrophone logging system to record ocean sound along a 458 km north to south traverse of the outer continental shelf break along the U.S. Pacific Northwest coast. Glider derived recordings yielded a unique perspective on the variation of ambient sound with depth, where natural wind generated surface processes were identified as a dominant acoustic contributor to spectral levels in the region. Near and far-field vessel radiated noise were also found to add significant energy to ambient conditions. Spatially distributed measurements of ambient sound levels recorded from the glider were consistent with long-term spectral estimates from fixed station, deep ocean hydrophone array measurements during the 1990–2000’s in the region. Ocean sound level measurements captured by a mobile glider are shown to be an effective and valuable asset for describing ocean surface wind conditions and characterizing spatial and temporal changes in the underwater acoustic environment over a broad regional scale.
Klíčová slova:
Acoustics – Ambient noise – Bioacoustics – Oceanography – Oceans – Ships – Wind – Statistical noise
Zdroje
1. Wood SL, Mierzwa CE. State of Technology in Autonomous Underwater Gliders. Marine Technology Society Journal. 2013;47(5):84–96.
2. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ. Underwater gliders for ocean research. Marine Technology Society Journal. 2004;38(2):73–84.
3. Davis RE, Eriksen CC, Jones CP. Autonomous buoyancy-driven underwater gliders. Taylor and Francis, London; 2002. p. 37–58.
4. Schofield O, Kohut J, Aragon D, Creed L, Graver J, Haldeman C, et al. Slocum gliders: Robust and ready. Journal of Field Robotics. 2007;24(6):473–85.
5. Gebbie J, Siderius M, Allen JS. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle. Journal of the Acoustical Society of America. 2012;132(5):El351–El7. doi: 10.1121/1.4754419 23145694
6. Baumgartner MF, Fratantoni DM. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnology and Oceanography. 2008;53(5part2):2197–209.
7. Baumgartner MF, Fratantoni DM, Hurst TP, Brown MW, Cole TVN, Van Parijs SM, et al. Real-time reporting of baleen whale passive acoustic detections from ocean gliders. The Journal of the Acoustical Society of America. 2013;134(3):1814–23. doi: 10.1121/1.4816406 23967915
8. Moore SE, Howe BM, Stafford KM, Boyd ML. Including whale call detection in standard ocean measurements: Application of acoustic Seagliders. Marine Technology Society Journal. 2007;41(4):53–7.
9. Klinck H, Mellinger DK, Klinck K, Bogue NM, Luby JC, Jump WA, et al. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™. PloS one. 2012;7(5):e36128. doi: 10.1371/journal.pone.0036128 22629309
10. Küsel ET, Munoz T, Siderius M, Mellinger DK, Heimlich S. Marine mammal tracks from two-hydrophone acoustic recordings made with a glider. Ocean Science. 2017;13(2):273.
11. Wall CC, Lembke C, Mann DA. Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology. Marine Ecology Progress Series. 2012;449:55–64.
12. Matsumoto H, Haxel JH, Dziak RP, Bohnenstiehl DR, Embley RW. Mapping the sound field of an erupting submarine volcano using an acoustic glider. The Journal of the Acoustical Society of America. 2011;129(3):EL94–EL9. doi: 10.1121/1.3547720 21428474
13. Cauchy P, Heywood KJ, Merchant ND, Queste BY, Testor P. Wind Speed Measured from Underwater Gliders Using Passive Acoustics. Journal of Atmospheric and Oceanic Technology. 2018;35(12):2305–21.
14. Andrew RK, Howe BM, Mercer JA, Dzieciuch MA. Ocean ambient sound: comparing the 1960s with the 1990s for a receiver off the California coast. Acoustics Research Letters Online. 2002;3(2):65–70.
15. McDonald MA, Hildebrand JA, Wiggins SM. Increases in deep ocean anibient noise in the northeast pacific west of San Nicolas Island, California. Journal of the Acoustical Society of America. 2006;120(2):711–8. doi: 10.1121/1.2216565 16938959
16. Curtis KR, Howe BM, Mercer JA. Low-frequency ambient sound in the North Pacific: Long time series observations. Journal of the Acoustical Society of America. 1999;106(6):3189–200.
17. Chapman NR, Price A. Low frequency deep ocean ambient noise trend in the Northeast Pacific Ocean. The Journal of the Acoustical Society of America. 2011;129(5):EL161–EL5. doi: 10.1121/1.3567084 21568369
18. Andrew RK, Howe BM, Mercer JA. Long-time trends in ship traffic noise for four sites off the North American West Coast. Journal of the Acoustical Society of America. 2011;129(2):642–51. doi: 10.1121/1.3518770 21361423
19. Oliver MJ, Breece MW, Haulsee DE, Cimino MA, Kohut J, Aragon D, et al. Factors affecting detection efficiency of mobile telemetry Slocum gliders. Animal Biotelemetry. 2017;5(1):14.
20. Mellinger DK. Ishmael 1.0 user’s guide. NOAA Technical Memorandum OAR PMEL. 2001;120(26):98115–6349.
21. Halpern D. Summertime surface diurnal period winds measured over an upwelling region near the Oregon coast. Journal of Geophysical Research. 1974;79(15):2223–30.
22. Wenz GM. Acoustic ambient noise in the ocean: spectra and sources. The Journal of the Acoustical Society of America. 1962;34:1936.
23. Hatch L, Clark C, Merrick R, Van Parijs S, Ponirakis D, Schwehr K, et al. Characterizing the Relative Contributions of Large Vessels to Total Ocean Noise Fields: A Case Study Using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary. Environ Manage. 2008;42(5):735–52. doi: 10.1007/s00267-008-9169-4 18626686
24. National Science Foundation (NSF) NOaAAN, Office of Naval Research (ONR), Schmidt Ocean Institute (SOI). Cascadia Open Access Seismic Transects (COAST) rvdataus. 2019;cruise MGL1212, R/V Marcus G. Langseth.
25. Merchant ND, Barton TR, Thompson PM, Pirotta E, Dakin DT, Dorocicz J. Spectral probability density as a tool for ambient noise analysis. The Journal of the Acoustical Society of America. 2013;133(4):EL262–EL7. doi: 10.1121/1.4794934 23556689
26. Ross D. Mechanics of underwater sound. New York: Pergamon Press; 1976.
27. Ross D. Ship sources of ambient noise. IEEE Journal of Oceanic Engineering. 2005;30(2):257–61.
28. Knudsen VO, Alford R, Emling J. Underwater ambient noise. J Mar Res. 1948;7(3):410–29.
29. Urick RJ. Principles of underwater sound, 1983. McGraw-Hill; 1983.
30. Halpern D. Variations in the density field during coastal upwelling. Tethys. 1974;6(1–2):363–74.
31. Carey WM, Browning D. Low frequency ocean ambient noise: measurements and theory. Sea Surface Sound: Springer; 1988. p. 361–76.
32. Kewley DJ, Browning DG, Carey WM. Low-frequency wind-generated ambient noise source levels. The Journal of the Acoustical Society of America. 1990;88(4):1894–902.
33. Chapman NR, Cornish JW. Wind dependence of deep ocean ambient noise at low frequencies. The Journal of the Acoustical Society of America. 1993;93(2):782–9.
34. Ma BB, Nystuen JA, Lien RC. Prediction of underwater sound levels from rain and wind. Journal of the Acoustical Society of America. 2005;117(6):3555–65. doi: 10.1121/1.1910283 16018459
35. Piggott C. Ambient sea noise at low frequencies in shallow water of the Scotian Shelf. The Journal of the Acoustical Society of America. 1964;36(11):2152–63.
36. Sirovic A, Wiggins SM, Oleson EM. Ocean noise in the tropical and subtropical Pacific Ocean. Journal of the Acoustical Society of America. 2013;134(4):2681–9. doi: 10.1121/1.4820884 24116406
37. McKenna MF, Ross D, Wiggins SM, Hildebrand JA. Underwater radiated noise from modern commercial ships. Journal of the Acoustical Society of America. 2012;131(1):92–103. doi: 10.1121/1.3664100 22280574
38. Collins MD. New and improved parabolic equation models. The Journal of the Acoustical Society of America. 1998;104(3):1808-. doi: 10.1121/1.423601
39. Au WWL. The sonar of dolphins: Springer; 1993.
40. Wiggins SM, Frasier KE, Elizabeth Henderson E, Hildebrand JA. Tracking dolphin whistles using an autonomous acoustic recorder array. The Journal of the Acoustical Society of America. 2013;133(6):3813–8. doi: 10.1121/1.4802645 23742335
41. Norris TF, Mc Donald M, Barlow J. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration. The Journal of the Acoustical Society of America. 1999;106(1):506–14. doi: 10.1121/1.427071 10420640
42. Stafford KM, NieukIrk SL, Fox CG. Geographic and seasonal variation of blue whale calls in the North Pacific. Journal of Cetacean Research and Management. 2001;3(1):65–76.
43. Moore SE, Stafford KM, Dahlheim ME, Fox CG, Braham HW, Polovina JJ, et al. Seasonal variation in reception of fin whale calls at five geographic areas in the North Pacific. Marine Mammal Science. 2006;14(3):617–27.
44. Ford JH, Peel D, Kroodsma D, Hardesty BD, Rosebrock U, Wilcox C. Detecting suspicious activities at sea based on anomalies in Automatic Identification Systems transmissions. Plos One. 2018;13(8).
45. Wiggins S, Manley J, Brager E, Woolhiser B, editors. Monitoring marine mammal acoustics using Wave Glider. OCEANS 2010 MTS/IEEE SEATTLE; 2010 20–23 Sept. 2010.
46. Haver SM, Gedamke J, Hatch LT, Dziak RP, Van Parijs S, McKenna MF, et al. Monitoring long-term soundscape trends in US Waters: The NOAA/NPS Ocean Noise Reference Station Network. Marine Policy. 2018;90:6–13.
47. Hatch LT, Wahle CM, Gedamke J, Harrison J, Laws B, Moore SE, et al. Can you hear me here? Managing acoustic habitat in US waters. Endangered Species Research. 2016;30:171–86.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy