#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Moving system with action sport cameras: 3D kinematics of the walking and running in a large volume


Autoři: Gustavo R. D. Bernardina aff001;  Tony Monnet aff002;  Pietro Cerveri aff003;  Amanda P. Silvatti aff004
Působiště autorů: School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil aff001;  Department of Biomechanics and Robotics, PPRIME Institute, CNRS – University of Poitiers – ENSMA, UPR 3346, Poitiers, France aff002;  Eletronics, Information and Bioengineering Department, Politecnico di Milano, Milano, Italy aff003;  Department of Physical Education, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224182

Souhrn

Traditionally, motion analysis in clinical laboratories using optoelectronic systems (MOCAP) is performed in acquisition volumes of limited size. Given the complexity and cost of MOCAP in larger volumes, action sports cameras (ASC) represent an alternative approach in which the cameras move along with the subject during the movement task. Thus, this study aims to compare ASC against a traditional MOCAP in the perspective of reconstructing walking and running movements in large spatial volumes, which extend over the common laboratory setup. The two systems, consisting of four cameras each, were closely mounted on a custom carrying structure endowed with wheels. Two different acquisition setups, namely steady and moving conditions, were taken into account. A devoted calibration procedure, using the same protocol for the two systems, enabled the reconstruction of surface markers, placed on voluntary subjects, during the two acquisition setups. The comparison was quantitatively expressed in terms of three-dimensional (3D) marker reconstruction and kinematic computation quality. The quality of the marker reconstruction quality was quantified by means of the mean absolute error (MAE) of inter-marker distance and two-stick angle. The kinematic computation quality was quantified by means of the measure of the knee angle reconstruction during walking and running trials. In order to evaluate the camera system and moving camera effects, we used a Wilcoxon rank sum test and a Kruskal Wallis test (post-hoc Tukey), respectively. The Spearman correlation coefficient (ρ) and the Wilcoxon rank sum test were applied to compare the kinematic data obtained by the two camera systems. We found small ASC MAE values (< 2.6mm and 1.3°), but they were significantly bigger than the MOCAP (< 0.7mm and 0.6°). However, for the human movement no significant differences were found between kinematic variables in walking and running acquisitions (p>0.05), and the motion patterns of the right-left knee angles between both systems were very similar (ρ>0.90, p<0.05). These results highlighted the promising results of a system that uses ASC based on the procedure of mobile cameras to follow the movement of the subject, allowing a less constrained movement in the direction in which the structure moves, compared to the traditional laboratory setup.

Klíčová slova:

Body limbs – Cameras – Gait analysis – Instrument calibration – Kinematics – Knees – Musculoskeletal system – Walking


Zdroje

1. Bernardina GRD, Monnet T, Pinto HT, Barros RML, Cerveri P, Silvatti AP. Are action sport cameras accurate enough for 3d motion analysis? A comparison with a commercial motion capture system. J Appl Biomech. 2018; 0(0): 1–17. doi: 10.1123/jab.2017-0101

2. Pietraszewski B, Winiarski S, Jaroszczuk S. Three-dimensional human gait pattern–reference data for normal men. Acta of Bioeng Biomech. 2012; 14(3). doi: 10.5277/abb120302

3. Mirek E, Kubica JL, Szymura J, Pasiut S, Rudzinska M, Chwala W. Assessment of gait therapy effectiveness in patients with parkinson’s disease on the basis of three-dimensional movement analysis. Front Neurol. 2016; 7(102). doi: 10.3389/fneur.2016.00102 27445968

4. Riley PO, Paolini G, Croce UD, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of over ground and treamill walking in healthy subjects. Gait Posture. 2007; 26(1): 17–24. doi: 10.1016/j.gaitpost.2006.07.003 16905322

5. Bini RR, Diefenthaeler F. Kinetics and kinematics analysis of incremental cycling to exhaustion. Sport Biomech. 2010; 9(4): 223–35. doi: 10.1080/14763141.2010.540672 21309297

6. Steer R, McGregor A, Bull A. A comparison of kinematics and performance measures of two rowing ergometers. J Sports Sci Med. 2006; 5(1): 52–9. 24198681

7. Alton F, Baldey L, Caplan S, Morrissey MC. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998; 13(6): 434–40. doi: 10.1016/s0268-0033(98)00012-6

8. Sinclair J, Richards J, Taylor PJ, Edmundson CJ, Brooks D, Hobbs SJ. Three-dimensional kinematic comparison of treadmill and overground running. Sports Biomech. 2013; 12(3):272–82. doi: 10.1080/14763141.2012.759614 24245052

9. Fong DT, Chan Y. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review. Sensors. 2010; 10(12): 11556–65. doi: 10.3390/s101211556 22163542

10. Fantozzi S, Giovanardi A, Borra D, Gatta G. Gait kinematic analysis in water using wearable inertial magnetic sensors. PLos ONE. 2015; 10(9): e0138105. doi: 10.1371/journal.pone.0138105 26368131

11. Nez A, Fradet L, Laguillaumie P, Monnet T, Lacouture P. Comparison of calibration methods for accelerometers used in human motion analysis. Med Eng Phys. 2016; 38(11): 1289–99. 27590920

12. Colloud F, Cheze L, Andre N, Bahuaud P. An innovative solution for 3D kinematics measurement for large volumes. J Biomech. 2008; 41(S1), S57.

13. Begon M, Colloud F, Fohanno V, Bahuaud P, Monnet T. Computation of the 3D kinematics in a global frame over a 40 m-long pathway using a rolling motion analysis system. J Biomech. 2009; 42(16): 2649–53. doi: 10.1016/j.jbiomech.2009.08.020 19800066

14. Silvatti AP, Dias FAS, Cerveri P, Barros RM. Comparison of different camera calibration approaches for underwater applications. J Biomech. 2012; 45(6): 1112–16. doi: 10.1016/j.jbiomech.2012.01.004 22284990

15. Silvatti AP, Cerveri P, Telles T, Dias FA, Baroni G, Barros RM. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction. Comput Methods Biomech Biomed Eng. 2013; 16(11): 1240–48. doi: 10.1080/10255842.2012.664637 22435960

16. Bernardina GRD, Cerveri P, Barros RML, Marins JCB, Silvatti AP. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis. PLoS ONE. 2016; 11(8): 1–14. doi: 10.1371/journal.pone.0160490 27513846

17. Bernardina GRD, Cerveri P, Barros RML, Marins JCB, Silvatti AP. In-air versus underwater comparison of 3D reconstruction accuracy using action sport cameras. J Biomech. 2017; 51: 77–82. doi: 10.1016/j.jbiomech.2016.11.068 27974154

18. Sinclair J, Taylor PJ, Hobbs SJ. Digital filtering of three-dimensional lower extremity kinematics: an assessment. J Hum Kinet. 2013; 39:25–36. doi: 10.2478/hukin-2013-0065 24511338

19. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, New Jersey: Lawrence Erbaum; 1988.

20. Field A. Discovering statistics using SPSS. 3rd edition. London: Sage; 2009.

21. Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications: state-of-the-art review. Eur J Sport Sci. 2018; 18(6): 806–19. doi: 10.1080/17461391.2018.1463397 29741985

22. Cerveri P, Pedotti A, Borghese NA. Combined evolution strategies for dynamic calibration of video-based measurement systems. IEEE Trans Evolut Comput. 2001; 5(3): 271–82. doi: 10.1109/4235.930315

23. Eichelberger P, Ferraro M, Minder U, Denton T, Blasimann A, Krause F, et al. Analysis of accuracy in optical motion capture–A protocol for laboratory setup evaluation. J Biomech. 2016; 49(10): 2085–88. doi: 10.1016/j.jbiomech.2016.05.007 27230474


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#