Preference-based measure of health-related quality of life and its determinants in sickle cell disease in Nigeria
Autoři:
Adedokun Oluwafemi Ojelabi aff001; Afolabi Elijah Bamgboye aff001; Jonathan Ling aff002
Působiště autorů:
University of Ibadan, Ibadan, Nigeria
aff001; School of Nursing and Health Sciences, University of Sunderland, Sunderland, United Kingdom
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223043
Souhrn
Background
Health-related quality of life (HRQL) and economic burden are important issues for people with sickle cell disease (SCD) owing to better survival due to medical advances. Preference-based or utility information is necessary to make informed economic decisions on treatment and alternative therapies. This study aimed to assess preference-based measures of HRQL in sickle cell patients.
Methods and findings
Data were collected from two SCD outpatient clinics in Ibadan, Nigeria. A standard algorithm was used to derive utility scores, and measure SF-6D from the SF-36. A multivariate regression model was used to assess predictors and their impact. A combination of socio-demographic, bio-physiological and psychosocial variables predicted utility score in people with SCD. Socio-demographic and bio-physiological factors explained 7.5% and 17.9% of the variance respectively, while psychosocial factors explained 4.9%. Women had lower utility scores with a small effect size (d = 0.17). Utility score increased with level of education but decreased with age, anxiety, frequency of pain episodes and number of co-morbidities.
Conclusions
Utility score in SCD was low indicating a substantial impact of the disease on HRQL of patients and the value they place on their health state due to the limitations they experienced. Interventions should include both clinical and psychosocial approach to help in improving their quality of life of the patients.
Klíčová slova:
Cost-effectiveness analysis – Depression – Health economics – Hospitals – Psychological and psychosocial issues – Psychometrics – Quality of life – Ulcers
Zdroje
1. Aliyu ZY, Gordeuk V, Sachdev V, Babadoko A, Mamman AI, Akpanpe P, et al. Prevalence and risk factors for pulmonary artery systolic hypertension among sickle cell disease patients in Nigeria. Am J Hematol. 2008; 485–490. doi: 10.1002/ajh.21162 18306362
2. W H O. Report by the Secretariat of the Fifty-Ninth World Health Assembly A59/9. Rep Secr Fifty-ninth World Heal Assem A59/9. 2006.
3. Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79: 704–712. 11545326
4. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86: 480–487. doi: 10.2471/BLT.06.036673 18568278
5. United Nations. General Assembly Resolution on Recognition of Sickle Cell Anaemia as a Public Health Problem. A/RES/63/237. 2008;1: 2005–2006. doi: 10.1093/oxfordhb/9780199560103.003.0005
6. Ballas SK, Lewis CN, Noone AM, Krasnow SH, Kamarulzaman E, Burka ER. Clinical, hematological, and biochemical features of Hb SC disease. Am J Hematol. 1982;13: 37–51. doi: 10.1002/ajh.2830130106 7137165
7. Powars D, Hiti A. Sickle cell anemia: βS gene cluster haplotypes as genetic markers for severe disease expression. Am J Dis Child. 1993;147: 1197–1202. doi: 10.1001/archpedi.1993.02160350071011 8237915
8. Thomas PW, Higgs DR, Serjeant GR. Benign clinical course in homozygous sickle cell disease: a search for predictors. J Clin Epidemiol. 1997;50: 121–126. doi: 10.1016/s0895-4356(96)00320-4 9120504
9. Ohene-Frempong K, Weiner SJ, Sleeper LA, Miller ST, Embury S, Moohr JW, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91: 288–294. 9414296
10. Ashley-Koch A., Yang Q. and Olney RS. Sickle Hemoglobin (Hb S) Allele and Sickle Cell Disease: A HuGE Review. Am J Epidemiol Huge Genome Epidemiol Rev. 2000;151: 839–845.
11. Castro O, Brambilla DJ, Thorington B, Reindorf CA, Scott RB, Gillette P, et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood. 1994;84: 643–649. 7517723
12. Oliveira CC de, Ciasca SM, Moura-Ribeiro M. Stroke in patients with sickle cell disease: clinical and neurological aspects. Arq Neuropsiquiatr. 2008;66: 30–33. doi: 10.1590/s0004-282x2008000100008 18392410
13. Powars DR. Sickle cell anemia and major organ failure. Hemoglobin. 1990;14: 573–598. doi: 10.3109/03630269009046967 2101835
14. Scheinman JI. Sickle cell disease and the kidney. Nat Rev Nephrol. 2009;5: 78.
15. Ladizinski B, Bazakas A, Mistry N, Alavi A, Sibbald RG, Salcido R. Sickle cell disease and leg ulcers. Adv Skin Wound Care. 2012;25: 420–428. doi: 10.1097/01.ASW.0000419408.37323.0c 22914039
16. Hernigou P, Galacteros F, Bachir D, Goutallier D. Deformities of the hip in adults who have sickle-cell disease and had avascular necrosis in childhood. A natural history of fifty-two patients. J Bone Joint Surg Am. 1991;73: 81–92. 1985998
17. Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am J Prev Med. 2011;41: S398–S405. doi: 10.1016/j.amepre.2011.09.013 22099364
18. Lanzkron S, Carroll CP, Haywood C Jr. Mortality rates and age at death from sickle cell disease: US, 1979–2005. Public Health Rep. 2013;128: 110–116. doi: 10.1177/003335491312800206 23450875
19. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease—life expectancy and risk factors for early death. N Engl J Med. 1994;330: 1639–1644. doi: 10.1056/NEJM199406093302303 7993409
20. Ware RE. Is sickle cell anemia a neglected tropical disease? PLoS Negl Trop Dis. 2013;7: e2120. doi: 10.1371/journal.pntd.0002120 23750287
21. Anie KA, Steptoe A, Bevan DH. Sickle cell disease: Pain, coping and quality of life in a study of adults in the UK. Br J Health Psychol. 2002;7: 331–344. doi: 10.1348/135910702760213715 12614504
22. Menezes AS de O da P, Len CA, Hilário MOE, Terreri MTRA, Braga JAP. Qualidade de vida em portadores de doença falciforme. Rev Paul Pediatr. 2013;31: 24–29. doi: 10.1590/s0103-05822013000100005 23703040
23. Caird H, Camic PM, Thomas V. The lives of adults over 30 living with sickle cell disorder. Br J Health Psychol. 2011;16: 542–558. doi: 10.1348/135910710X529278 21722275
24. van Litsenburg Raphaële R L, Huisman J, Raat H, Kaspers GJL, Gemke RJBJ. Health-related quality of life and utility scores in short-term survivors of pediatric acute lymphoblastic leukemia. Qual Life Res. 2013;22: 677–681. doi: 10.1007/s11136-012-0183-x 22547048
25. Asnani M, Lipps G, Reid M. Component structure of the SF-36 in Jamaicans with sickle cell disease. West Indian Med J. 2007;56: 491–497. 18646491
26. Sogutlu A, Levenson JL, McClish DK, Rosef SD, Smith WR. Somatic symptom burden in adults with sickle cell disease predicts pain, depression, anxiety, health care utilization, and quality of life: the PiSCES project. Psychosomatics. 2011;52: 272–279. doi: 10.1016/j.psym.2011.01.010 21565599
27. McClish DK, Penberthy LT, Bovbjerg VE, Roberts JD, Aisiku IP, Levenson JL, et al. 2005. {Health} related quality of life in sickle cell patients: the {PiSCES} project. Health Qual Life Outcomes. 2005;3: 50. doi: 10.1186/1477-7525-3-50 16129027
28. Gibson RC, Morgan KAD, Abel WD, Sewell CA, Martin JS, Lowe GA, et al. Locus of control, depression and quality of life among persons with sickle cell disease in Jamaica. Psychol Health Med. 2013;18: 451–460. doi: 10.1080/13548506.2012.749353 23324018
29. Brazier J, Deverill M. A checklist for judging preference‐based measures of health related quality of life: learning from psychometrics. Health Econ. 1999;8: 41–51. doi: 10.1002/(sici)1099-1050(199902)8:1<41::aid-hec395>3.0.co;2-# 10082142
30. Schuessler KF, Fisher GA. Quality of life research and sociology. Annu Rev Sociol. 1985;11: 129–149.
31. Von Neumann J, Morgenstern O. Theory of games and economic behavior, 2nd rev. 1947.
32. Torrance GW. Measurement of health state utilities for economic appraisal: a review. J Health Econ. 1986;5: 1–30. doi: 10.1016/0167-6296(86)90020-2 10311607
33. Torrance GW. Utility approach to measuring health-related quality of life. J Chronic Dis. 1987;40: 593–603. doi: 10.1016/0021-9681(87)90019-1 3298297
34. Hays RD, Reeve BB, Smith AW, Clauser SB. Associations of cancer and other chronic medical conditions with SF-6D preference-based scores in Medicare beneficiaries. Qual Life Res. 2014;23: 385–391. doi: 10.1007/s11136-013-0503-9 23990395
35. Drummond M. Introducing economic and quality of life measurements into clinical studies. Ann Med. 2001;33: 344–349. doi: 10.3109/07853890109002088 11491193
36. Anie KA, Grocott H, White L, Dzingina M, Rogers G, Cho G. Patient self-assessment of hospital pain, mood and health-related quality of life in adults with sickle cell disease. BMJ Open. 2012;2: e001274–e001274. doi: 10.1136/bmjopen-2012-001274 22761289
37. Gold MR. Cost-effectiveness in health and medicine. Oxford university press; 1996.
38. Wyld M, Morton RL, Hayen A, Howard K, Webster AC. A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments. PLoS Med. 2012;9: e1001307. doi: 10.1371/journal.pmed.1001307 22984353
39. Brown GC, Sharma S, Brown MM, Kistler J. Utility values and age-related macular degeneration. Arch Ophthalmol. 2000;118: 47–51. doi: 10.1001/archopht.118.1.47 10636413
40. Sharma S, Brown GC, Brown MM, Hollands H, Robins R, Shah GK. Validity of the time trade-off and standard gamble methods of utility assessment in retinal patients. Br J Ophthalmol. 2002;86: 493–496. doi: 10.1136/bjo.86.5.493 11973240
41. Bramlett RE, Bothe AK, Franic DM. Using preference-based measures to assess quality of life in stuttering. J Speech, Lang Hear Res. 2006;49: 381–394.
42. Brown GC, Brown MM, Sharma S, Beauchamp G, Hollands H. The reproducibility of ophthalmic utility values. Trans Am Ophthalmol Soc. 2001;99: 199. 11797307
43. Engel L, Bryan S, Evers SMAA, Dirksen CD, Noonan VK, Whitehurst DGT. Exploring psychometric properties of the SF-6D, a preference-based health-related quality of life measure, in the context of spinal cord injury. Qual Life Res. 2014;23: 2383–2393. doi: 10.1007/s11136-014-0677-9 24700379
44. Bayliss EA, Ellis JL, Steiner JF. Subjective assessments of comorbidity correlate with quality of life health outcomes: initial validation of a comorbidity assessment instrument. Health Qual Life Outcomes. 2005;3: 51. doi: 10.1186/1477-7525-3-51 16137329
45. Kriegsman DMW, Penninx BWJH, Van Eijk JTM, Boeke AJP, Deeg DJH. Self-reports and general practitioner information on the presence of chronic diseases in community dwelling elderly: a study on the accuracy of patients’ self-reports and on determinants of inaccuracy. J Clin Epidemiol. 1996;49: 1407–1417. doi: 10.1016/s0895-4356(96)00274-0 8970491
46. Penninx BWJH, Beekman ATF, Ormel J, Kriegsman DMW, Boeke AJP, Van Eijk JTM, et al. Psychological status among elderly people with chronic diseases: does type of disease play a part? J Psychosom Res. 1996;40: 521–534. doi: 10.1016/0022-3999(95)00620-6 8803861
47. Van Den Bos GAM. The burden of chronic diseases in terms of disability, use of health care and healthy life expectancies. Eur J Public Health. 1995;5: 29–34.
48. Ojelabi A, Graham Y, Ling J. Health-related Quality of Life Predictors in Children and Adolescents with Sickle Cell Disease: A Systematic Review. Int J Trop Dis Heal. 2017;22: 1–14. doi: 10.9734/IJTDH/2017/31954
49. Konotey-Ahulu FID. The sickle cell diseases: Clinical manifestations including the sickle crisis. Arch Intern Med. 1974;133: 611–619. 4818434
50. Wrotniak BH, Schall JI, Brault ME, Balmer DF, Stallings VA. Health-related quality of life in children with sickle cell disease using the child health questionnaire. J Pediatr Heal Care. 2014;28: 14–22. doi: 10.1016/j.pedhc.2012.09.004 23140759
51. Coleman B, Ellis-Caird H, McGowan J, Benjamin MJ. How sickle cell disease patients experience, understand and explain their pain: An Interpretative Phenomenological Analysis study. Br J Health Psychol. 2016;21: 190–203. doi: 10.1111/bjhp.12157 26333530
52. Kohne E. Hemoglobinopathies: clinical manifestations, diagnosis, and treatment. Dtsch Ärzteblatt Int. 2011;108: 532–40. doi: 10.3238/arztebl.2011.0532 21886666
53. Brazier J, Usherwood T, Harper R, Thomas K. Deriving a preference-based single index from the UK SF-36 Health Survey. J Clin Epidemiol. 1998;51: 1115–1128. doi: 10.1016/s0895-4356(98)00103-6 9817129
54. Ware Jr JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Med Care. 1992; 473–483. 1593914
55. Shiu ATY, Choi KC, Lee DTF, Yu DSF, Man Ng W. Application of a health-related quality of life conceptual model in community-dwelling older Chinese people with diabetes to understand the relationships among clinical and psychological outcomes. J Diabetes Investig. 2014;5: 677–686. doi: 10.1111/jdi.12198 25422768
56. Bullinger M. German translation and psychometric testing of the SF-36 health survey: preliminary results from the IQOLA project. Soc Sci Med. 1995;41: 1359–1366. doi: 10.1016/0277-9536(95)00115-n 8560303
57. Phaladze NA, Human S, Dlamini SB, Hulela EB, Hadebe IM, Sukati NA, et al. Quality of Life and the Concept of “Living Well” With HIV / AIDS in Sub-Saharan Africa. J Nurs Schorlarsh. 2005;37: 120–126.
58. Dampier C, LeBeau P, Rhee S, Lieff S, Kesler K, Ballas S, et al. Health-related quality of life in adults with sickle cell disease (SCD): A report from the comprehensive sickle cell centers clinical trial consortium. Am J Hematol. 2011;86: 203–205. doi: 10.1002/ajh.21905 21264908
59. Asnani MR, Lipps GE, Reid ME. Validation of the SF-36 in Jamaicans with sickle-cell disease. Psychol Health Med. 2009;14: 606–618. doi: 10.1080/13548500903016567 19844839
60. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ. 2002;21: 271–292. doi: 10.1016/s0167-6296(01)00130-8 11939242
61. Brazier JE, Roberts J. The estimation of a preference-based measure of health from the SF-12. Med Care. 2004;42: 851–859. doi: 10.1097/01.mlr.0000135827.18610.0d 15319610
62. Kharroubi SA, Brazier JE, Roberts J, O’Hagan A. Modelling SF-6D health state preference data using a nonparametric Bayesian method. J Health Econ. 2007;26: 597–612. doi: 10.1016/j.jhealeco.2006.09.002 17069909
63. McCabe C, Brazier J, Gilks P, Tsuchiya A, Roberts J, O’Hagan A, et al. Using rank data to estimate health state utility models. J Health Econ. 2006;25: 418–431. doi: 10.1016/j.jhealeco.2005.07.008 16499981
64. Walters SJ, Brazier JE. Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Qual life Res. 2005;14: 1523–1532. doi: 10.1007/s11136-004-7713-0 16110932
65. Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the {GAD}-7. Arch Intern Med. 2006;166: 1092–1097. doi: 10.1001/archinte.166.10.1092 16717171
66. Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc; 2013.
67. Mastandréa ÉB, Lucchesi F, Kitayama MMG, Figueiredo MS, Citero V de A. The relationship between genotype, psychiatric symptoms and quality of life in adult patients with sickle cell disease in São Paulo, Brazil: a cross-sectional study. Sao Paulo Med J. 2015;133: 00. doi: 10.1590/1516-3180.2015.00171105 26648431
68. Treadwell MJ, Barreda F, Kaur K, Gildengorin G. Emotional distress, barriers to care, and health-related quality of life in sickle cell disease. J Clin Outcomes Manag. 2015;22: 10–20.
69. Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: Validity of a brief depression severity measure. J Gen Intern Med. 2001;16: 606–613. doi: 10.1046/j.1525-1497.2001.016009606.x 11556941
70. Kroenke K, Spitzer RL, Williams JBW, Löwe B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: A systematic review. Gen Hosp Psychiatry. 2010;32: 345–359. doi: 10.1016/j.genhosppsych.2010.03.006 20633738
71. Henkel V, Mergl R, Kohnen R, Allgaier A-K, Möller H-J, Hegerl U. Use of brief depression screening tools in primary care: consideration of heterogeneity in performance in different patient groups. Gen Hosp Psychiatry. 2004;26: 190–198. doi: 10.1016/j.genhosppsych.2004.02.003 15121347
72. Williams JW, Pignone M, Ramirez G, Stellato CP. Identifying depression in primary care: a literature synthesis of case-finding instruments. Gen Hosp Psychiatry. 2002;24: 225–237. doi: 10.1016/s0163-8343(02)00195-0 12100833
73. Löwe B, Kroenke K, Herzog W, Gräfe K. Measuring depression outcome with a brief self-report instrument: sensitivity to change of the Patient Health Questionnaire (PHQ-9). J Affect Disord. 2004;81: 61–66. doi: 10.1016/S0165-0327(03)00198-8 15183601
74. Lucchesi F, Figueiredo MS, Mastandrea EB, Levenson JL, Smith WR, Jacinto AF, et al. Physicians’ Perception of Sickle-cell Disease Pain. J Natl Med Assoc. 2016;108: 113–118. doi: 10.1016/j.jnma.2016.04.004 27372471
75. Ola BA, Yates SJ, Dyson SM. Living with sickle cell disease and depression in Lagos, Nigeria: A mixed methods study. Soc Sci Med. 2016;161: 27–36. doi: 10.1016/j.socscimed.2016.05.029 27239705
76. Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ. 2011;2: 53. doi: 10.5116/ijme.4dfb.8dfd 28029643
77. Streiner DL. Starting at the beginning: an introduction to coefficient alpha and internal consistency. J Pers Assess. 2003;80: 99–103. doi: 10.1207/S15327752JPA8001_18 12584072
78. Cronbach LJ. Coefficient alpha and the internal structure of tests. Psychometrika. 1951;16: 297–334.
79. Halvorsrud L, Kirkevold M, Diseth A, Kalfoss M. Quality of Life Model: Predictors of Quality of Life Among Sick Older Adults. Res Theory Nurs Pract. 2010;24: 241–259. doi: 10.1891/1541-6577.24.4.241 21197919
80. Panepinto JA. Health-related quality of life in patients with hemoglobinopathies. Hematology Am Soc Hematol Educ Program. 2012;2012: 284–9. doi: 10.1182/asheducation-2012.1.284 23233593
81. McClish DK, Levenson JL, Penberthy LT, Roseff SD, Bovbjerg VE, Roberts JD, et al. Gender differences in pain and healthcare utilization for adult sickle cell patients: The PiSCES Project. J women’s Heal. 2006;15: 146–154.
82. Han S-H, Kim B, Lee S-A, Group KQ in ES. Contribution of the family environment to depression in Korean adults with epilepsy. Seizure. 2015;25: 26–31. doi: 10.1016/j.seizure.2014.11.011 25645631
83. Johnson EK, Jones JE, Seidenberg M, Hermann BP. The relative impact of anxiety, depression, and clinical seizure features on health‐related quality of life in epilepsy. Epilepsia. 2004;45: 544–550. doi: 10.1111/j.0013-9580.2004.47003.x 15101836
84. Cohen J. Statistical power analysis for the behavioral sciences 2nd edn. Erlbaum Associates, Hillsdale; 1988.
85. de Graaff B, Neil A, Sanderson K, Yee KC, Palmer AJ. Quality of life utility values for hereditary haemochromatosis in Australia. Health Qual Life Outcomes. 2016;14: 1–9. doi: 10.1186/s12955-015-0404-4
86. Espallargues M, Czoski-Murray CJ, Bansback NJ, Carlton J, Lewis GM, Hughes LA, et al. The impact of age-related macular degeneration on health status utility values. Invest Ophthalmol Vis Sci. 2005;46: 4016–4023. doi: 10.1167/iovs.05-0072 16249475
87. Peasgood T, Brennan A, Mansell P, Elliott J, Basarir H, Kruger J. The impact of diabetes-related complications on preference-based measures of health-related quality of life in adults with Type I diabetes. Med Decis Mak. 2016;36: 1020–1033.
88. Pinto AM, Kuppermann M, Nakagawa S, Vittinghoff E, Wing RR, Kusek JW, et al. Comparison and correlates of three preference-based health-related quality-of-life measures among overweight and obese women with urinary incontinence. Qual Life Res. 2011;20: 1655–1662. doi: 10.1007/s11136-011-9896-5 21461953
89. Davison SN, Jhangri GS, Feeny DH. Comparing the Health Utilities Index Mark 3 (HUI3) with the Short Form‐36 Preference‐Based SF‐6D in Chronic Kidney Disease. Value Heal. 2009;12: 340–345.
90. Walters SJ, Brazier JE. What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. Health Qual Life Outcomes. 2003;1: 4. doi: 10.1186/1477-7525-1-4 12737635
91. Khanna D, Furst DE, Wong WK, Tsevat J, Clements PJ, Park GS, et al. Reliability, validity, and minimally important differences of the SF-6D in systemic sclerosis. Qual Life Res. 2007;16: 1083–1092. doi: 10.1007/s11136-007-9207-3 17404896
92. Rijken M, van Kerkhof M, Dekker J, Schellevis FG. Comorbidity of chronic diseases. Qual Life Res. 2005;14: 45–55. doi: 10.1007/s11136-004-0616-2 15789940
93. Berg B. Sf‐6d Population Norms. Health Econ. 2012;21: 1508–1512. doi: 10.1002/hec.1823 22250070
94. El-Shinnawy H, Goueli T, Nasreldin M, Meshref a. Anxiety, depressive disorders, and quality of life in adults with sickle cell disease. Middle East Curr Psychiatry. 2013;20: 80–86. doi: 10.1097/01.XME.0000426319.48898.03
95. Edwards R, Telfair J, Cecil H, Lenoci J. Self-efficacy as a predictor of adult adjustment to sickle cell disease: One-year outcomes. Psychosom Med. 2001;63: 850–858. doi: 10.1097/00006842-200109000-00020 11573035
96. Ellison AM, Shaw K. Management of vasoocclusive pain events in sickle cell disease. Pediatr Emerg Care. 2007;23: 832–841. doi: 10.1097/PEC.0b013e31815a05e2 18007218
97. Ballas SK. Update on pain management in sickle cell disease. Hemoglobin. 2011;35: 520–529. doi: 10.3109/03630269.2011.610478 21910604
98. Miller DR, Rogers WH, Kazis LE, Spiro A III, Ren XS, Haffer SC. patients’ Self‐report of Diseases in the Medicare Health Outcomes Survey Based on Comparisons With Linked Survey and Medical Data From the Veterans Health Administration. J Ambul Care Manage. 2008;31: 161–177. doi: 10.1097/01.JAC.0000314707.88160.9c 18360178
99. Feeny D, Spritzer K, Hays RD, Liu H, Ganiats TG, Kaplan RM, et al. Agreement about identifying patients who change over time: cautionary results in cataract and heart failure patients. Med Decis Mak. 2012;32: 273–286.
100. Richardson J, Iezzi A, Khan MA. Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and ‘micro-utility’effects. Qual Life Res. 2015;24: 2045–2053. doi: 10.1007/s11136-015-0926-6 25636660
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy