Mouse movement measures enhance the stop-signal task in adult ADHD assessment
Autoři:
Anton Leontyev aff001; Takashi Yamauchi aff001
Působiště autorů:
Department of Psychological and Brain Sciences, Texas A&M University,Texas, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225437
Souhrn
The accurate detection of attention-deficit/hyperactivity disorder (ADHD) symptoms, such as inattentiveness and behavioral disinhibition, is crucial for delivering timely assistance and treatment. ADHD is commonly diagnosed and studied with specialized questionnaires and behavioral tests such as the stop-signal task. However, in cases of late-onset or mild forms of ADHD, behavioral measures often fail to gauge the deficiencies well-highlighted by questionnaires. To improve the sensitivity of behavioral tests, we propose a novel version of the stop-signal task (SST), which integrates mouse cursor tracking. In two studies, we investigated whether introducing mouse movement measures to the stop-signal task improves associations with questionnaire-based measures, as compared to the traditional (keypress-based) version of SST. We also scrutinized the influence of different parameters of stop-signal tasks, such as the method of stop-signal delay setting or definition of response inhibition failure, on these associations. Our results show that a) SSRT has weak association with impulsivity, while mouse movement measures have strong and significant association with impulsivity; b) machine learning models trained on the mouse movement data from “known” participants using nested cross-validation procedure can accurately predict impulsivity ratings of “unknown” participants; c) mouse movement features such as maximum acceleration and maximum velocity are among the most important predictors for impulsivity; d) using preset stop-signal delays prompts behavior that is more indicative of impulsivity.
Klíčová slova:
Acceleration – ADHD – Animal performance – Behavior – Impulsivity – Musculoskeletal system – Questionnaires – Velocity
Zdroje
1. Alessi SM, Petry NM. Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behavioural Processes. 2003 Oct;64(3):345–354. Available from: doi: 10.1016/s0376-6357(03)00150-5 14580703
2. Poulos CX, Le AD, Parker JL. Impulsivity predicts individual susceptibility to high levels of alcohol self-administration. Behavioural Pharmacology. 1995 Dec;6(8):810???814. Available from: https://doi.org/10.1097/00008877-199512000-00006. 11224384
3. Iacono WG, Malone SM, McGue M. Behavioral Disinhibition and the Development of Early-Onset Addiction: Common and Specific Influences. Annual Review of Clinical Psychology. 2008 Apr;4(1):325–348. Available from: https://doi.org/10.1146/annurev.clinpsy.4.022007.141157.
4. Fuermaier ABM, Tucha L, Koerts J, Aschenbrenner S, Kaunzinger I, Hauser J, et al. Cognitive impairment in adult ADHDPerspective matters! Neuropsychology. 2015 Jan;29(1):45–58. Available from: doi: 10.1037/neu0000108 24933488
5. Chamberlain SR, Sahakian BJ. The neuropsychiatry of impulsivity. Current Opinion in Psychiatry. 2007 May;20(3):255–261. Available from: doi: 10.1097/YCO.0b013e3280ba4989 17415079
6. Kamradt JM, Ullsperger JM, Nikolas MA. Executive function assessment and adult attention-deficit/hyperactivity disorder: Tasks versus ratings on the Barkley Deficits in Executive Functioning Scale. Psychological Assessment. 2014;26(4):1095–1105. Available from: doi: 10.1037/pas0000006 24885846
7. Leontyev A, Sun S, Wolfe M, Yamauchi T. Augmented Go/No-Go Task: Mouse Cursor Motion Measures Improve ADHD Symptom Assessment in Healthy College Students. Frontiers in Psychology. 2018;9:496. Available from: https://www.frontiersin.org/article/10.3389/fpsyg.2018.00496. 29695985
8. Lipszyc J, Schachar R. Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society. 2010 Aug;16(06):1064–1076. Available from: https://doi.org/10.1017/s1355617710000895.
9. Verbruggen F, Adams RC, van’t Wout F, Stevens T, McLaren IPL, Chambers CD. Are the Effects of Response Inhibition on Gambling Long-Lasting? PLOS ONE. 2013 07;8(7):1–7. Available from: https://doi.org/10.1371/journal.pone.0070155.
10. Oosterlaan J, Logan GD, Sergeant JA. Response Inhibition in AD/HD, CD, Comorbid AD/HDCD, Anxious, and Control Children: A Meta-analysis of Studies with the Stop Task. Journal of Child Psychology and Psychiatry. 1998 Mar;39(3):411–425. Available from: https://doi.org/10.1111/1469-7610.00336. 9670096
11. Soreni N, Crosbie J, Ickowicz A, Schachar R. Stop Signal and Conners’ Continuous Performance Tasks. Journal of Attention Disorders. 2009 May;13(2):137–143. Available from: doi: 10.1177/1087054708326110 19429883
12. McLaughlin NCR, Kirschner J, Foster H, O’Connell C, Rasmussen SA, Greenberg BD. Stop Signal Reaction Time Deficits in a Lifetime Obsessive-Compulsive Disorder Sample. Journal of the International Neuropsychological Society. 2016 Jun;22(07):785–789. Available from: https://doi.org/10.1017/s1355617716000540.
13. Hughes ME, Fulham WR, Johnston PJ, Michie PT. Stop-signal response inhibition in schizophrenia: Behavioural, event-related potential and functional neuroimaging data. Biological Psychology. 2012 Jan;89(1):220–231. Available from: https://doi.org/10.1016/j.biopsycho.2011.10.013.
14. Tillman CM, Thorell LB, Brocki KC, Bohlin G. Motor Response Inhibition and Execution in the Stop-Signal Task: Development and Relation to ADHD Behaviors. Child Neuropsychology. 2007;14(1):42–59. Available from: https://doi.org/10.1080/09297040701249020.
15. Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience. 2003 Jan;6(2):115–116. Available from: doi: 10.1038/nn1003 12536210
16. Swick D, Ashley V, Turken U. Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience. 2008 Oct;9(1):102. Available from: https://doi.org/10.1186/1471-2202-9-102.
17. van Wouwe NC, Pallavaram S, Phibbs FT, Martinez-Ramirez D, Neimat JS, Dawant BM, et al. Focused stimulation of dorsal subthalamic nucleus improves reactive inhibitory control of action impulses. Neuropsychologia. 2017;99:37–47. Available from: http://www.sciencedirect.com/science/article/pii/S0028393217300623. doi: 10.1016/j.neuropsychologia.2017.02.016 28237741
18. Mirabella G, Iaconelli S, Romanelli P, Modugno N, Lena F, Manfredi M, et al. Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition In Parkinson’s Patients. Cerebral Cortex. 2011 08;22(5):1124–1132. Available from: doi: 10.1093/cercor/bhr187 21810782
19. Carver AC, Livesey DJ, Charles M. Age Related Changes in Inhibitory Control as Measured by Stop Signal Task Performance. International Journal of Neuroscience. 2001 Jan;107(1–2):43–61. Available from: doi: 10.3109/00207450109149756 11328681
20. Fillmore MT, Rush CR. Impaired inhibitory control of behavior in chronic cocaine users. Drug and Alcohol Dependence. 2002 May;66(3):265–273. Available from: doi: 10.1016/s0376-8716(01)00206-x 12062461
21. Mirabella G, Fragola M, Giannini G, Modugno N, Lakens D. Inhibitory control is not lateralized in Parkinson’s patients. Neuropsychologia. 2017;102:177–189. doi: 10.1016/j.neuropsychologia.2017.06.025 28647437
22. Mirabella G. Should I stay or should I go? Conceptual underpinnings of goal-directed actions. Frontiers in Systems Neuroscience. 2014;8:206. Available from: https://www.frontiersin.org/article/10.3389/fnsys.2014.00206. 25404898
23. Crosbie J, Arnold P, Paterson A, Swanson J, Dupuis A, Li X, et al. Response Inhibition and ADHD Traits: Correlates and Heritability in a Community Sample. Journal of Abnormal Child Psychology. 2013 Apr;41(3):497–507. Available from: doi: 10.1007/s10802-012-9693-9 23315233
24. Toplak ME, West RF, Stanovich KE. Practitioner Review: Do performance-based measures and ratings of executive function assess the same construct? Journal of Child Psychology and Psychiatry. 2012 Oct;54(2):131–143. Available from: doi: 10.1111/jcpp.12001 23057693
25. Enticott PG, Ogloff JRP, Bradshaw JL. Associations between laboratory measures of executive inhibitory control and self-reported impulsivity. Personality and Individual Differences. 2006 Jul;41(2):285–294. Available from: https://doi.org/10.1016/j.paid.2006.01.011.
26. Shuster J, Toplak ME. Executive and motivational inhibition: Associations with self-report measures related to inhibition. Consciousness and Cognition. 2009 Jun;18(2):471–480. Available from: doi: 10.1016/j.concog.2009.01.004 19233688
27. Sharma L, Markon KE, Clark LA. Toward a theory of distinct types of impulsive behaviors: A meta-analysis of self-report and behavioral measures. Psychological Bulletin. 2014;140(2):374–408. Available from: doi: 10.1037/a0034418 24099400
28. Hauser TU, Fiore VG, Moutoussis M, Dolan RJ. Computational Psychiatry of ADHD: Neural Gain Impairments across Marrian Levels of Analysis. Trends in Neurosciences. 2016 Feb;39(2):63–73. Available from: doi: 10.1016/j.tins.2015.12.009 26787097
29. Stillman PE, Shen X, Ferguson MJ. How Mouse-tracking Can Advance Social Cognitive Theory. Trends in Cognitive Sciences. 2018 Jun;22(6):531–543. Available from: doi: 10.1016/j.tics.2018.03.012 29731415
30. Cisek P, Kalaska JF. Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action. Neuron. 2005 Mar;45(5):801–814. Available from: doi: 10.1016/j.neuron.2005.01.027 15748854
31. Mirabella G, Pani P, Ferraina S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. Journal of Neurophysiology. 2011;106(3):1454–1466. doi: 10.1152/jn.00995.2010 21697448. Available from: https://doi.org/10.1152/%1fjn.00995.2010.
32. Mattia M, Pani P, Mirabella G, Costa S, Del Giudice P, Ferraina S. Heterogeneous Attractor Cell Assemblies for Motor Planning in Premotor Cortex. Journal of Neuroscience. 2013;33(27):11155–11168. Available from: https://www.jneurosci.org/content/33/27/11155. doi: 10.1523/JNEUROSCI.4664-12.2013 23825419
33. Yamauchi T, Xiao K. Reading Emotion From Mouse Cursor Motions: Affective Computing Approach. Cognitive Science. 2017 Nov;42(3):771–819. Available from: doi: 10.1111/cogs.12557 29131372
34. Sun D, Paredes P, Canny J. MouStress: Detecting Stress from Mouse Motion. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ‘14. New York, NY, USA: ACM; 2014. p. 61–70. Available from: http://doi.acm.org/10.1145/2556288.2557243.
35. Seelye A, Hagler S, Mattek N, Howieson DB, Wild K, Dodge HH, et al. Computer mouse movement patterns: A potential marker of mild cognitive impairment. Alzheimers & Dementia: Diagnosis, Assessment & Disease Monitoring. 2015 Dec;1(4):472–480. Available from: https://doi.org/10.1016/j.dadm.2015.09.006.
36. Grimes G, Valacich J. Mind over mouse: The effect of cognitive load on mouse movement behavior. In: 2015 International Conference on Information Systems: Exploring the Information Frontier, ICIS 2015. Association for Information Systems; 2015.
37. Rheem H, Verma V, Becker DV. Use of Mouse-tracking Method to Measure Cognitive Load. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2018 Sep;62(1):1982–1986. Available from: https://doi.org/10.1177/1541931218621449.
38. Yamauchi T, Leontyev A, Wolfe M. Choice reaching trajectory analysis as essential behavioral measures for psychological science. Insights in Psychology. 2017;1(4).
39. Leontyev A, Yamauchi T, Razavi M. Machine Learning Stop Signal Test (ML-SST): ML-based Mouse Tracking Enhances Adult ADHD Diagnosis. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW); 2019.
40. Erb CD, Moher J, Sobel DM, Song JH. Reach tracking reveals dissociable processes underlying cognitive control. Cognition. 2016 Jul;152:114–126. Available from: doi: 10.1016/j.cognition.2016.03.015 27045465
41. Moher J, Anderson BA, Song JH. Dissociable Effects of Salience on Attention and Goal-Directed Action. Current Biology. 2015 Aug;25(15):2040–2046. Available from: doi: 10.1016/j.cub.2015.06.029 26190076
42. Bundt C, Ruitenberg MFL, Abrahamse EL, Notebaert W. Early and late indications of item-specific control in a Stroop mouse tracking study. PLOS ONE. 2018 05;13(5):1–14. Available from: https://doi.org/10.1371/journal.pone.0197278.
43. Dshemuchadse M, Scherbaum S, Goschke T. How decisions emerge: Action dynamics in intertemporal decision making. Journal of Experimental Psychology: General. 2013;142(1):93–100. Available from: https://doi.org/10.1037/a0028499.
44. Ma N, Yu AJ. Inseparability of Go and Stop in Inhibitory Control: Go Stimulus Discriminability Affects Stopping Behavior. Frontiers in Neuroscience. 2016;10:54. Available from: https://www.frontiersin.org/article/10.3389/fnins.2016.00054. 27047324
45. Congdon E, Mumford JA, Cohen JR, Galvan A, Canli T, Poldrack RA. Measurement and Reliability of Response Inhibition. Frontiers in Psychology. 2012;3. Available from: https://doi.org/10.3389/fpsyg.2012.00037.
46. Bari A, Robbins TW. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology. 2013 sep;108:44–79. doi: 10.1016/j.pneurobio.2013.06.005 23856628
47. Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, et al. PsychoPy2: Experiments in behavior made easy. Behavior Research Methods. 2019 Feb;51(1):195–203. Available from: doi: 10.3758/s13428-018-01193-y 30734206
48. Mirabella G, Pani P, Ferraina S. Context influences on the preparation and execution of reaching movements. Cognitive Neuropsychology. 2008 dec;25(7–8):996–1010. doi: 10.1080/02643290802003216 19378414
49. van Hulst BM, de Zeeuw P, Vlaskamp C, Rijks Y, Zandbelt BB, Durston S. Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis. Psychological Medicine. 2018;48(15):2515–2521. doi: 10.1017/S0033291718000107 29415788
50. Mirabella G, Iaconelli S, Modugno N, Giannini G, Lena F, Cantore G. Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson’s patients. PloS one. 2013;8(5):e62793. doi: 10.1371/journal.pone.0062793 23658775
51. Matzke D, Verbruggen F, Logan GD. In: The Stop-Signal Paradigm. John Wiley & Sons; 2018. p. 1–45. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119170174.epcn510.
52. Dalley JW, Robbins TW. Fractionating impulsivity: neuropsychiatric implications. Nature Reviews Neuroscience. 2017 mar;18(3):158–171. doi: 10.1038/nrn.2017.8 28209979
53. Verbruggen F, Logan GD. Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences. 2008 Nov;12(11):418–424. Available from: doi: 10.1016/j.tics.2008.07.005 18799345
54. Logan GD, Cowan WB. On the ability to inhibit thought and action: A theory of an act of control. Psychological Review. 1984;91(3):295–327.
55. Shenoy P, Yu AJ. Rational Decision-Making in Inhibitory Control. Frontiers Human Neuroscience. 2011;5.
56. Mirabella G, Pani P, Paré M, Ferraina S. Inhibitory control of reaching movements in humans. Experimental Brain Research. 2006 apr;174(2):240–255. doi: 10.1007/s00221-006-0456-0 16636792
57. Spivey MJ, Grosjean M, Knoblich G. Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences. 2005;102(29):10393–10398. Available from: https://www.pnas.org/content/102/29/10393.
58. Kieslich PJ, Henninger F. Mousetrap: An integrated, open-source mouse-tracking package. Behavior Research Methods. 2017 Oct;49(5):1652–1667. Available from: doi: 10.3758/s13428-017-0900-z 28646399
59. Thura D, Cisek P. The Basal Ganglia Do Not Select Reach Targets but Control the Urgency of Commitment. Neuron. 2017 Aug;95(5):1160–1170.e5. Available from: doi: 10.1016/j.neuron.2017.07.039 28823728
60. Izawa J, Criscimagna-Hemminger SE, Shadmehr R. Cerebellar Contributions to Reach Adaptation and Learning Sensory Consequences of Action. Journal of Neuroscience. 2012;32(12):4230–4239. Available from: http://www.jneurosci.org/content/32/12/4230. doi: 10.1523/JNEUROSCI.6353-11.2012 22442085
61. Choi JES, Vaswani PA, Shadmehr R. Vigor of Movements and the Cost of Time in Decision Making. Journal of Neuroscience. 2014;34(4):1212–1223. Available from: http://www.jneurosci.org/content/34/4/1212. doi: 10.1523/JNEUROSCI.2798-13.2014 24453313
62. Shadmehr R, Mussa-Ivaldi S. Biological learning and control: how the brain builds representations, predicts events, and makes decisions. MIT Press; 2012.
63. Wojnowicz MT, Ferguson MJ, Dale R, Spivey MJ. The Self-Organization of Explicit Attitudes. Psychological Science. 2009;20(11):1428–1435. doi: 10.1111/j.1467-9280.2009.02448.x 19818047. Available from: https://doi.org/10.1111/j.1467-9280.2009.02448.x.
64. Hehman E, Stolier RM, Freeman JB. Advanced mouse-tracking analytic techniques for enhancing psychological science. Group Processes & Intergroup Relations. 2015;18(3):384–401. Available from: https://doi.org/10.1177/1368430214538325.
65. Sosnik R, Shemesh M, Abeles M. The point of no return in planar hand movements: an indication of the existence of high level motion primitives. Cognitive Neurodynamics. 2007 Dec;1(4):341–358. Available from: doi: 10.1007/s11571-007-9025-x 19003504
66. Mancini C, Cardona F, Baglioni V, Panunzi S, Pantano P, Suppa A, et al. Inhibition is impaired in children with obsessive-compulsive symptoms but not in those with tics. Movement Disorders. 2018 may;33(6):950–959. doi: 10.1002/mds.27406 29781133
67. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300. Available from: http://www.jstor.org/stable/2346101.
68. James G, Witten D, Hastie T, Tibshirani R. Linear Model Selection and Regularization. In: An Introduction to Statistical Learning: With Applications in R. New York: Springer; 2013. p. 244–255.
69. Schroeder MA, Lander J, Levine-Silverman S. Diagnosing and Dealing with Multicollinearity. Western Journal of Nursing Research. 1990;12(2):175–187. doi: 10.1177/019394599001200204 2321373. Available from: https://doi.org/10.1037/a0038893.
70. Logan GD, Yamaguchi M, Schall JD, Palmeri TJ. Inhibitory control in mind and brain 2.0: Blocked-input models of saccadic countermanding. Psychological Review. 2015 Apr;122(2):115–147. Available from: doi: 10.1037/a0038893 25706403
71. Schall JD, Palmeri TJ, Logan GD. Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017 Feb;372(1718):20160193. Available from: https://doi.org/10.1098/rstb.2016.0193.
72. Band GPH, van der Molen MW, Logan GD. Horse-race model simulations of the stop-signal procedure. Acta Psychologica. 2003 Feb;112(2):105–142. Available from: doi: 10.1016/s0001-6918(02)00079-3 12521663
73. Liddle EB, Scerif G, Hollis CP, Batty MJ, Groom MJ, Liotti M, et al. Looking before you leap: A theory of motivated control of action. Cognition. 2009 Jul;112(1):141–158. Available from: doi: 10.1016/j.cognition.2009.03.006 19409540
74. Morein-Zamir S, Hommersen P, Johnston C, Kingstone A. Novel Measures of Response Performance and Inhibition in Children with ADHD. Journal of Abnormal Child Psychology. 2008 May;36(8):1199–1210. Available from: doi: 10.1007/s10802-008-9243-7 18465218
75. Verbruggen F, Stevens T, Chambers CD. Proactive and reactive stopping when distracted: An attentional account. Journal of Experimental Psychology: Human Perception and Performance. 2014 Aug;40(4):1295–1300. Available from: doi: 10.1037/a0036542 24842070
76. Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H. A Meta-Analytic Review of Stopping Performance in Attention-Deficit/Hyperactivity Disorder: Deficient Inhibitory Motor Control? Journal of Abnormal Psychology. 2005;114(2):216–222. Available from: doi: 10.1037/0021-843X.114.2.216 15869352
77. Wolpert DM, Landy MS. Motor control is decision-making. Current Opinion in Neurobiology. 2012 Dec;22(6):996–1003. Available from: doi: 10.1016/j.conb.2012.05.003 22647641
78. Tseng MH, Henderson A, Chow SM, Yao G. Relationship between motor proficiency, attention, impulse, and activity in children with ADHD. Developmental Medicine & Child Neurology. 2004 May;46(06). Available from: https://doi.org/10.1017/s0012162204000623.
79. Stray LL, Kristensen Ø, Lomeland M, Skorstad M, Stray T, Tønnessen FE. Motor regulation problems and pain in adults diagnosed with ADHD. Behavioral and Brain Functions. 2013 May;9(1):18. Available from: https://doi.org/10.1186/1744-9081-9-18.
80. Fliers E, Rommelse N, Vermeulen SHHM, Altink M, Buschgens CJM, Faraone SV, et al. Motor coordination problems in children and adolescents with ADHD rated by parents and teachers: effects of age and gender. Journal of Neural Transmission. 2008 Feb;115(2):211–220. Available from: doi: 10.1007/s00702-007-0827-0 17994185
81. FARAONE SV, BIEDERMAN J, MICK E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychological Medicine. 2006;36(2):159–165. doi: 10.1017/S003329170500471X 16420712
82. Hong SB, Dwyer D, Kim JW, Park EJ, Shin MS, Kim BN, et al. Subthreshold attention-deficit/hyperactivity disorder is associated with functional impairments across domains: a comprehensive analysis in a large-scale community study. European Child & Adolescent Psychiatry. 2014 Aug;23(8):627–636. Available from: https://doi.org/10.1007/s00787-013-0501-z.
83. Selinus EN, Molero Y, Lichtenstein P, Anckarsäter H, Lundström S, Bottai M, et al. Subthreshold and threshold attention deficit hyperactivity disorder symptoms in childhood: psychosocial outcomes in adolescence in boys and girls. Acta Psychiatrica Scandinavica. 2016 Oct;134(6):533–545. Available from: doi: 10.1111/acps.12655 27714770
84. Fontenelle LF, Oostermeijer S, Harrison BJ, Pantelis C, Yücel M. Obsessive-compulsive disorder, impulse control disorders and drug addiction. Drugs. 2011;71(7):827–840. doi: 10.2165/11591790-000000000-00000 21568361
85. Coles ME, Schofield CA, Pietrefesa AS. Behavioral inhibition and obsessive-compulsive disorder. Journal of Anxiety Disorders. 2006;20(8):1118–1132. Available from: http://www.sciencedirect.com/science/article/pii/S0887618506000399. doi: 10.1016/j.janxdis.2006.03.003 16621440
86. Maldonado M, Dunbar E, Chemla E. Mouse tracking as a window into decision making. Behavior Research Methods. 2019 Feb;Available from: https://doi.org/10.3758/s13428-018-01194-x.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy