Serial block-face scanning electron microscopy reveals neuronal-epithelial cell fusion in the mouse cornea
Autoři:
Justin A. Courson aff001; Ian Smith aff001; Thao Do aff001; Paul T. Landry aff001; Aubrey Hargrave aff001; Ali R. Behzad aff002; Sam D. Hanlon aff001; Rolando E. Rumbaut aff003; C. Wayne Smith aff003; Alan R. Burns aff001
Působiště autorů:
University of Houston, College of Optometry, Houston, TX, United States of America
aff001; King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
aff002; Baylor College of Medicine, Children’s Nutrition Center, Houston, TX, United States of America
aff003; Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224434
Souhrn
The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8–10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ≤ 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.
Klíčová slova:
Axons – Cell fusion – Cell membranes – Cornea – Epithelial cells – Membrane fusion – Mitochondria – Nerves
Zdroje
1. Rozsa AJ, Beuerman RW. Density and organization of free nerve endings in the corneal epithelium of the rabbit. Pain. 1982;14(2):105–20. Epub 1982/10/01. doi: 10.1016/0304-3959(82)90092-6 7177676.
2. Zhao J, Nagasaki T. A role of corneal nerves in epithelial homeostasis. Investigative ophthalmology & visual science. 2006;47:3956.
3. Belmonte C GJ. 6: Corneal Nociceptors. Neurobiology of Nociceptors. 1996:146.
4. Belmonte C, Aracil A, Acosta MC, Luna C, Gallar J. Nerves and sensations from the eye surface. The ocular surface. 2004;2(4):248–53. Epub 2007/01/12. 17216099.
5. Devor M. Sodium channels and mechanisms of neuropathic pain. The journal of pain: official journal of the American Pain Society. 2006;7(1 Suppl 1):S3–s12. Epub 2006/01/24. doi: 10.1016/j.jpain.2005.09.006 16426998.
6. Matzner O, Devor M. Hyperexcitability at sites of nerve injury depends on voltage-sensitive Na+ channels. Journal of neurophysiology. 1994;72(1):349–59. Epub 1994/07/01. doi: 10.1152/jn.1994.72.1.349 7965019.
7. Muller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: structure, contents and function. Experimental eye research. 2003;76(5):521–42. Epub 2003/04/17. doi: 10.1016/s0014-4835(03)00050-2 12697417.
8. Sridhar MS. Anatomy of cornea and ocular surface. Indian journal of ophthalmology. 2018;66(2):190–4. Epub 2018/01/31. doi: 10.4103/ijo.IJO_646_17 29380756; PubMed Central PMCID: PMC5819093.
9. Stepp MA, Tadvalkar G, Hakh R, Pal-Ghosh S. Corneal epithelial cells function as surrogate Schwann cells for their sensory nerves. Glia. 2017;65(6):851–63. Epub 2016/11/24. doi: 10.1002/glia.23102 27878997; PubMed Central PMCID: PMC5395310.
10. Schimmelpfennig B. Nerve structures in human central corneal epithelium. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. 1982;218(1):14–20. Epub 1982/01/01. doi: 10.1007/bf02134093 7056476.
11. Woolf CJ. Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life sciences. 2004;74(21):2605–10. Epub 2004/03/26. doi: 10.1016/j.lfs.2004.01.003 15041442.
12. Muller LJ, Pels L, Vrensen GF. Ultrastructural organization of human corneal nerves. Investigative ophthalmology & visual science. 1996;37(4):476–88. Epub 1996/03/01. 8595948.
13. Harris KM, Perry E, Bourne J, Feinberg M, Ostroff L, Hurlburt J. Uniform serial sectioning for transmission electron microscopy. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26(47):12101–3. Epub 2006/11/24. doi: 10.1523/jneurosci.3994-06.2006 17122034.
14. Gonzalez-Gonzalez O, Bech F, Gallar J, Merayo-Lloves J, Belmonte C. Functional Properties of Sensory Nerve Terminals of the Mouse Cornea. Investigative ophthalmology & visual science. 2017;58(1):404–15. Epub 2017/01/25. doi: 10.1167/iovs.16-20033 28118665.
15. Lafontant PJ, Behzad AR, Brown E, Landry P, Hu N, Burns AR. Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy. PloS one. 2013;8(8):e72388. doi: 10.1371/journal.pone.0072388 PMC3751930. 24058412
16. Denk W, Horstmann H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biology. 2004;2(11):e329. doi: 10.1371/journal.pbio.0020329 PMC524270. 15514700
17. Nguyen HB, Thai TQ, Saitoh S, Wu B, Saitoh Y, Shimo S, et al. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging. Sci Rep. 2016;6:23721. Epub 2016/03/30. doi: 10.1038/srep23721 27020327; PubMed Central PMCID: PMC4810419.
18. Flegler SL, Heckman JW, Klomparens KL. Scanning and Transmission Electron Microscopy: An Introduction. Oxford New York: Oxford University Press, Inc.; 1993.
19. Petrescu MS, Larry CL, Bowden RA, Williams GW, Gagen D, Li Z, et al. Neutrophil interactions with keratocytes during corneal epithelial wound healing: a role for CD18 integrins. Investigative ophthalmology & visual science. 2007;48(11):5023–9. Epub 2007/10/27. doi: 10.1167/iovs.07-0562 17962453; PubMed Central PMCID: PMC2228250.
20. Gagen D, Laubinger S, Li Z, Petrescu MS, Brown ES, Smith CW, et al. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse. Experimental eye research. 2010;91(5):676–84. Epub 2010/08/18. doi: 10.1016/j.exer.2010.08.007 20713042; PubMed Central PMCID: PMC2962773.
21. Reith A, Mayhew TM. Stereology and Morphometry in Electron Microscopy: Problems and Solutions: Hemisphere Publishing Corporation; 1988.
22. Anderson HR, Stitt AW, Gardiner TA, Archer DB. Estimation of the surface area and volume of the retinal capillary basement membrane using the stereologic method of vertical sections. Analytical and quantitative cytology and histology. 1994;16(4):253–60. Epub 1994/08/01. 7945701.
23. Gibbons CH, Illigens BM, Wang N, Freeman R. Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology. 2009;72(17):1479–86. Epub 2009/04/29. doi: 10.1212/WNL.0b013e3181a2e8b8 19398703; PubMed Central PMCID: PMC2677479.
24. Knust J, Ochs M, Gundersen HJ, Nyengaard JR. Stereological estimates of alveolar number and size and capillary length and surface area in mice lungs. Anatomical record (Hoboken, NJ: 2007). 2009;292(1):113–22. Epub 2008/12/31. doi: 10.1002/ar.20747 19115381.
25. Mahon GJ, Anderson HR, Gardiner TA, McFarlane S, Archer DB, Stitt AW. Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Current eye research. 2004;28(4):277–84. Epub 2004/07/21. doi: 10.1076/ceyr.28.4.277.27835 15259297.
26. Michel RP, Cruz-Orive LM. Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. Journal of microscopy. 1988;150(Pt 2):117–36. Epub 1988/05/01. doi: 10.1111/j.1365-2818.1988.tb04603.x 3411604.
27. Schmitz C, Hof PR. Design-based stereology in neuroscience. Neuroscience. 2005;130(4):813–31. Epub 2005/01/18. doi: 10.1016/j.neuroscience.2004.08.050 15652981.
28. Weibel ER. Stereological methods in cell biology: where are we—where are we going? The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society. 1981;29(9):1043–52. Epub 1981/09/01. doi: 10.1177/29.9.7026667 7026667.
29. Howard CV, Reed MG. Unbiased Stereology. 2nd ed: Garland Science/BIOS Scientific Publishers; 2005.
30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. Epub 2012/06/30. doi: 10.1038/nmeth.2019 22743772; PubMed Central PMCID: PMC3855844.
31. Jackson M, Tourtellotte W. Neuron Culture from Mouse Superior Cervical Ganglion. Bio-protocol. 2014;4(2). Epub 2014/01/20. 27054145; PubMed Central PMCID: PMC4819978.
32. Hofmann MH, Bleckmann H. Effect of temperature and calcium on transneuronal diffusion of DiI in fixed brain preparations. J Neurosci Methods. 1999;88(1):27–31. Epub 1999/06/24. doi: 10.1016/s0165-0270(99)00007-2 10379576.
33. Murphy MC, Fox EA. Anterograde tracing method using DiI to label vagal innervation of the embryonic and early postnatal mouse gastrointestinal tract. J Neurosci Methods. 2007;163(2):213–25. Epub 2007/04/10. doi: 10.1016/j.jneumeth.2007.03.001 17418900; PubMed Central PMCID: PMC1974840.
34. Balice-Gordon RJ, Chua CK, Nelson CC, Lichtman JW. Gradual loss of synaptic cartels precedes axon withdrawal at developing neuromuscular junctions. Neuron. 1993;11(5):801–15. Epub 1993/11/01. doi: 10.1016/0896-6273(93)90110-d 8240805.
35. Godement P, Vanselow J, Thanos S, Bonhoeffer F. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development. 1987;101(4):697–713. Epub 1987/12/01. 2460302.
36. Honig MG, Hume RI. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol. 1986;103(1):171–87. Epub 1986/07/01. doi: 10.1083/jcb.103.1.171 2424918; PubMed Central PMCID: PMC2113786.
37. Doane MG. Fluorometric measurement of pyridine nucleotide reduction in the giant axon of the squid. The Journal of general physiology. 1967;50(11):2603–32. Epub 1967/12/01. doi: 10.1085/jgp.50.11.2603 4384698; PubMed Central PMCID: PMC2225669.
38. Yu DY, Cringle SJ, Balaratnasingam C, Morgan WH, Yu PK, Su EN. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog Retin Eye Res. 2013;36:217–46. Epub 2013/07/31. doi: 10.1016/j.preteyeres.2013.07.001 23891817.
39. Waxman SG, Kocsis JD, Stys PK. The Axon: Structure, Function and Pathophysiology. Oxford, New York: Oxford University Press; 1995. 691 p.
40. Schwann TH. Microscopical Research into the Accordance in the Structure and Growth of Animals and Plants. London: The Syndenham Society; 1847. 314 p.
41. Ogle BM, Cascalho M, Platt JL. Biological implications of cell fusion. Nature reviews Molecular cell biology. 2005;6(7):567–75. Epub 2005/06/16. doi: 10.1038/nrm1678 15957005.
42. Huda F, Fan Y, Suzuki M, Konno A, Matsuzaki Y, Takahashi N, et al. Fusion of Human Fetal Mesenchymal Stem Cells with "Degenerating" Cerebellar Neurons in Spinocerebellar Ataxia Type 1 Model Mice. PloS one. 2016;11(11):e0164202. Epub 2016/11/02. doi: 10.1371/journal.pone.0164202 27802273; PubMed Central PMCID: PMC5089746.
43. Ackman JB, Siddiqi F, Walikonis RS, LoTurco JJ. Fusion of microglia with pyramidal neurons after retroviral infection. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26(44):11413–22. Epub 2006/11/03. doi: 10.1523/jneurosci.3340-06.2006 17079670.
44. Sotnikov OS. Use of Cell Culture to Prove Syncytial Connection and Fusion of Neurons. Ceccherini-Nelli DL, editor: InTech; 2012.
45. Ambrosi DJ, Rasmussen TP. Reprogramming mediated by stem cell fusion. Journal of cellular and molecular medicine. 2005;9(2):320–30. Epub 2005/06/21. doi: 10.1111/j.1582-4934.2005.tb00358.x 15963252.
46. Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, et al. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. Journal of neuroscience research. 2016;94(3):207–30. Epub 2015/11/04. doi: 10.1002/jnr.23685 26525605; PubMed Central PMCID: PMC4981502.
47. Kim JH, Jin P, Duan R, Chen EH. Mechanisms of myoblast fusion during muscle development. Current opinion in genetics & development. 2015;32:162–70. Epub 2015/05/20. doi: 10.1016/j.gde.2015.03.006 25989064; PubMed Central PMCID: PMC4508005.
48. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416(6880):545–8. Epub 2002/04/05. doi: 10.1038/nature729 11932748.
49. Brodbeck WG, Anderson JM. GIANT CELL FORMATION AND FUNCTION. Current opinion in hematology. 2009;16(1):53–7. doi: 10.1097/MOH.0b013e32831ac52e PMC2679387. 19057205
50. Vignery A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. International journal of experimental pathology. 2000;81(5):291–304. Epub 2001/02/13. doi: 10.1111/j.1365-2613.2000.00164.x 11168677; PubMed Central PMCID: PMC2517739.
51. Primakoff P, Myles DG. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science (New York, NY). 2002;296(5576):2183–5. Epub 2002/06/22. doi: 10.1126/science.1072029 12077404.
52. Stein KK, Primakoff P, Myles D. Sperm-egg fusion: events at the plasma membrane. Journal of cell science. 2004;117(Pt 26):6269–74. Epub 2004/12/14. doi: 10.1242/jcs.01598 15591242.
53. Chen EH, Olson EN. Unveiling the mechanisms of cell-cell fusion. Science (New York, NY). 2005;308(5720):369–73. Epub 2005/04/16. doi: 10.1126/science.1104799 15831748.
54. Abmayr SM, Balagopalan L, Galletta BJ, Hong SJ. Cell and molecular biology of myoblast fusion. International review of cytology. 2003;225:33–89. Epub 2003/04/17. doi: 10.1016/s0074-7696(05)25002-7 12696590.
55. Chen EH, Olson EN. Towards a molecular pathway for myoblast fusion in Drosophila. Trends in cell biology. 2004;14(8):452–60. Epub 2004/08/17. doi: 10.1016/j.tcb.2004.07.008 15308212.
56. Horsley V, Pavlath GK. Forming a multinucleated cell: molecules that regulate myoblast fusion. Cells, tissues, organs. 2004;176(1–3):67–78. Epub 2004/01/28. doi: 10.1159/000075028 14745236.
57. Potgens AJ, Schmitz U, Bose P, Versmold A, Kaufmann P, Frank HG. Mechanisms of syncytial fusion: a review. Placenta. 2002;23 Suppl A:S107–13. Epub 2002/04/30. doi: 10.1053/plac.2002.0772 11978067.
58. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48. Epub 2004/03/10. doi: 10.1016/s0092-8674(04)00208-9 15006347.
59. Pomerantz J, Blau HM. Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nature cell biology. 2004;6(9):810–6. Epub 2004/09/02. doi: 10.1038/ncb0904-810 15340448.
60. Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV. How cells fuse. J Cell Biol. 2019;218(5):1436–51. Epub 2019/04/03. doi: 10.1083/jcb.201901017 30936162.
61. Pfannkuche K. Cell Fusion: Overviews and Methods. 2nd ed. Springer New York: Humana Press; 2015.
62. Vassilopoulos G, Russell DW. Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Current opinion in genetics & development. 2003;13(5):480–5. Epub 2003/10/11. doi: 10.1016/s0959-437x(03)00110-2 14550412.
63. Daniels JT, Dart JK, Tuft SJ, Khaw PT. Corneal stem cells in review. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2001;9(6):483–94. Epub 2002/03/19. 11896990.
64. Al-Aqaba MA, Alomar T, Miri A, Fares U, Otri AM, Dua HS. Ex vivo confocal microscopy of human corneal nerves. The British journal of ophthalmology. 2010;94(9):1251–7. Epub 2010/06/30. doi: 10.1136/bjo.2009.178244 20584714.
65. Patel DV, McGhee CN. In vivo laser scanning confocal microscopy confirms that the human corneal sub-basal nerve plexus is a highly dynamic structure. Investigative ophthalmology & visual science. 2008;49(8):3409–12. Epub 2008/04/29. doi: 10.1167/iovs.08-1951 18441297.
66. Petroll WM, Robertson DM. In Vivo Confocal Microscopy of the Cornea: New Developments in Image Acquisition, Reconstruction, and Analysis Using the HRT-Rostock Corneal Module. The ocular surface. 2015;13(3):187–203. Epub 2015/05/23. doi: 10.1016/j.jtos.2015.05.002 PubMed Central PMCID: PMC4499020. 25998608
67. Patel DV, McGhee CN. Mapping of the normal human corneal sub-Basal nerve plexus by in vivo laser scanning confocal microscopy. Investigative ophthalmology & visual science. 2005;46(12):4485–8. Epub 2005/11/24. doi: 10.1167/iovs.05-0794 16303938.
68. Auran JD, Koester CJ, Kleiman NJ, Rapaport R, Bomann JS, Wirotsko BM, et al. Scanning slit confocal microscopic observation of cell morphology and movement doi: 10.1016/s0161-6420(95)31057-3 7831039 the normal human anterior cornea. Ophthalmology. 1995;102(1):33–41. Epub 1995/01/01.
69. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28(1):41–51. Epub 2000/11/22. doi: 10.1016/s0896-6273(00)00084-2 11086982.
70. Sullivan KF, Cleveland DW. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(12):4327–31. doi: 10.1073/pnas.83.12.4327 3459176.
71. Spotl L, Sarti A, Dierich MP, Most J. Cell membrane labeling with fluorescent dyes for the demonstration of cytokine-induced fusion between monocytes and tumor cells. Cytometry. 1995;21(2):160–9. Epub 1995/10/01. doi: 10.1002/cyto.990210208 8582236.
72. Wojcieszyn JW, Schlegel RA, Lumley-Sapanski K, Jacobson KA. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983;96(1):151–9. Epub 1983/01/01. doi: 10.1083/jcb.96.1.151 6826645; PubMed Central PMCID: PMC2112265.
73. Chang DC. Cell poration and cell fusion using an oscillating electric field. Biophys J. 1989;56(4):641–52. doi: 10.1016/S0006-3495(89)82711-0 2819230.
74. Chi M, Xie W, Liu Y, Wen H, Zhao L, Song Y, et al. Mutations in the DI-DII linker of the NDV fusion protein conferred hemagglutinin-neuraminidase-independent cell fusion promotion. The Journal of general virology. 2019;100(6):958–67. Epub 2019/05/30. doi: 10.1099/jgv.0.001278 31140969.
75. Anantharam A, Axelrod D, Holz RW. Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion. Journal of neurochemistry. 2012;122(4):661–71. Epub 2012/06/08. doi: 10.1111/j.1471-4159.2012.07816.x 22671293; PubMed Central PMCID: PMC3408088.
76. Hodor PG, Ettensohn CA. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo. Developmental biology. 1998;199(1):111–24. Epub 1998/07/24. doi: 10.1006/dbio.1998.8924 9676196.
77. Giordano-Santini R, Linton C, Hilliard MA. Cell-cell fusion in the nervous system: Alternative mechanisms of development, injury, and repair. Seminars in cell & developmental biology. 2016;60:146–54. Epub 2016/07/05. doi: 10.1016/j.semcdb.2016.06.019 27375226.
78. Hay JC. Calcium: a fundamental regulator of intracellular membrane fusion? EMBO reports. 2007;8(3):236–40. Epub 2007/03/03. doi: 10.1038/sj.embor.7400921 17330068; PubMed Central PMCID: PMC1808041.
79. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968–73. Epub 2003/10/14. doi: 10.1038/nature02069 14555960.
80. Park JY, Jang SY, Shin YK, Koh H, Suh DJ, Shinji T, et al. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience. 2013;238:258–69. Epub 2013/03/15. doi: 10.1016/j.neuroscience.2013.02.033 23485808.
81. Kramer T, Enquist LW. Alphaherpesvirus infection disrupts mitochondrial transport in neurons. Cell host & microbe. 2012;11(5):504–14. Epub 2012/05/23. doi: 10.1016/j.chom.2012.03.005 22607803; PubMed Central PMCID: PMC3358700.
82. Baas PW, Rao AN, Matamoros AJ, Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken, NJ). 2016;73(9):442–60. Epub 2016/02/19. doi: 10.1002/cm.21286 26887570; PubMed Central PMCID: PMC5541393.
83. Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251(16):5069–77. Epub 1976/08/25. 134035.
84. Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nature reviews Neuroscience. 2005;6(11):889–98. Epub 2005/10/15. doi: 10.1038/nrn1788 16224497.
85. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature medicine. 2011;17(4):495–9. Epub 2011/03/29. doi: 10.1038/nm.2324 21441916.
86. Caillaud M, Richard L, Vallat JM, Desmouliere A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural regeneration research. 2019;14(1):24–33. Epub 2018/12/12. doi: 10.4103/1673-5374.243699 30531065; PubMed Central PMCID: PMC6263011.
87. DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE. The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 2015;302:174–203. Epub 2014/09/23. doi: 10.1016/j.neuroscience.2014.09.027 25242643; PubMed Central PMCID: PMC4366367.
88. Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nature reviews Neurology. 2013;9(12):668–76. Epub 2013/11/13. doi: 10.1038/nrneurol.2013.227 24217518.
89. Avery MA, Rooney TM, Pandya JD, Wishart TM, Gillingwater TH, Geddes JW, et al. WldS prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Current biology: CB. 2012;22(7):596–600. Epub 2012/03/20. doi: 10.1016/j.cub.2012.02.043 22425157; PubMed Central PMCID: PMC4175988.
90. Stoll G, Jander S, Myers RR. Degeneration and regeneration of the peripheral nervous system: from Augustus Waller's observations to neuroinflammation. Journal of the peripheral nervous system: JPNS. 2002;7(1):13–27. Epub 2002/04/10. 11939348.
91. Oshima A. Structure and closure of connexin gap junction channels. FEBS letters. 2014;588(8):1230–7. Epub 2014/02/05. doi: 10.1016/j.febslet.2014.01.042 24492007.
92. Thimm J, Mechler A, Lin H, Rhee S, Lal R. Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem. 2005;280(11):10646–54. Epub 2004/12/24. doi: 10.1074/jbc.M412749200 15615707.
93. Herve JC, Derangeon M. Gap-junction-mediated cell-to-cell communication. Cell Tissue Res. 2013;352(1):21–31. Epub 2012/09/04. doi: 10.1007/s00441-012-1485-6 22940728.
94. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. The British journal of ophthalmology. 2009;93(7):853–60. Epub 2008/11/21. doi: 10.1136/bjo.2008.150615 19019923.
95. Cruzat A, Qazi Y, Hamrah P. In Vivo Confocal Microscopy of Corneal Nerves in Health and Disease. The ocular surface. 2017;15(1):15–47. Epub 2016/10/25. doi: 10.1016/j.jtos.2016.09.004 27771327; PubMed Central PMCID: PMC5512932.
96. Simsek C, Kojima T, Nagata T, Dogru M, Tsubota K. Changes in Murine Subbasal Corneal Nerves After Scopolamine-Induced Dry Eye Stress Exposure. Investigative ophthalmology & visual science. 2019;60(2):615–23. Epub 2019/02/09. doi: 10.1167/iovs.18-26318 30735229.
97. Hillenaar T, van Cleynenbreugel H, Remeijer L. How normal is the transparent cornea? Effects of aging on corneal morphology. Ophthalmology. 2012;119(2):241–8. Epub 2011/11/01. doi: 10.1016/j.ophtha.2011.07.041 22035579.
98. Niederer RL, Perumal D, Sherwin T, McGhee CNJ. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. The British journal of ophthalmology. 2007;91(9):1165–9. Epub 03/27. doi: 10.1136/bjo.2006.112656 17389741.
99. Reichard M, Weiss H, Poletti E, Ruggeri A, Guthoff RF, Stachs O, et al. Age-Related Changes in Murine Corneal Nerves. Current eye research. 2016;41(8):1021–8. Epub 2015/12/09. doi: 10.3109/02713683.2015.1088952 26642890.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Skotská studie upřesnila zdravotní benefity aktivního cestování za prací a studiem
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF