Golgi reassembly and stacking protein 65 downregulation is required for the anti-cancer effect of dihydromyricetin on human ovarian cancer cells
Autoři:
Fengjie Wang aff001; Xianbing Chen aff002; Depei Yuan aff002; Yongfen Yi aff001; Yi Luo aff001
Působiště autorů:
Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
aff001; Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
aff002; Department of Gynecology and Obstetrics, The First Affiliated Hospital Of Chongqing Medical University, Chongqing, China
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225450
Souhrn
Golgi reassembly and stacking protein 65 (GRASP65), which has been involved in cancer progression, is associated with tumor growth and cell apoptosis. Dihydromyricetin (DHM) has demonstrated antitumor activity in different types of human cancers. However, the pharmacological effects of DHM on ovarian cancer (OC) and the molecular mechanisms that underlie these effects are largely unknown. The present study showed that DHM reduced cell migration and invasion in a concentration- and time-dependent manner and induced cell apoptosis primarily through upregulation of Cleaved-caspase-3 and the Bax/Bcl-2 ratio in OCs. To further clarify the cancer therapeutic target, we assessed the effect of DHM on the expression of GRASP65, which is overexpressed in human ovarian cancer tissues. DHM activated caspase-3 and decreased GRASP65 expression to promote cell apoptosis, implying that downregulation of GRASP65 was related to DHM-induced cell apoptosis. Additionally, the knockdown of GRASP65 by siRNA resulted in increased apoptosis after DHM treatment, while western blot and flow cytometry analysis demonstrated that overexpression of GRASP65 attenuated DHM-mediated apoptosis. In addition, the JNK/ERK pathway may be involved in DHM-mediated caspase-3 activation and GRASP65 downregulation. Taken together, these findings provide novel evidence of the anti-cancer properties of DHM in OCs, indicating that DHM is a potential therapeutic agent for ovarian cancer through the inhibition of GRASP65 expression and the regulation of JNK/ERK pathway.
Klíčová slova:
Apoptosis – Cancer cell migration – Cancer treatment – Flow cytometry – Ovarian cancer – Small interfering RNAs – Transfection – Golgi apparatus
Zdroje
1. Petrosyan A. Onco-Golgi: Is Fragmentation a Gate to Cancer Progression? Biochem Mol Biol J. 2015,1.
2. Sun JY, Zhu MZ, Wang SW, Miao S, Xie YH, Wang JB, et al. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine. 2007;14: 353–359. doi: 10.1016/j.phymed.2006.08.003 17097281
3. Rajamahanty S, Alonzo C, Aynehchi S, Choudhury M, Konno S. Growth inhibition of androgen-responsive prostate cancer cells with brefeldin A targeting cell cycle and androgen receptor. J Biomed Sci. 2010;17: 5. doi: 10.1186/1423-0127-17-5 20102617
4. Lin CY, Madsen ML, Yarm FR, Jang YJ, Liu X, Erikson RL, et al. Peripheral Golgi protein GRASP65 is a target of mitotic polo-like kinase (Plk) and Cdc2. Proc Natl Acad Sci. 2000;97: 12589–12594. doi: 10.1073/pnas.220423497 11050165
5. Sutterlin C, Lin C Y, Feng Y, Ferris DK, Erikson RL, Malhotra V. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis[J]. Proc Natl Acad Sci. 2001;98 (16): 9128–9132. doi: 10.1073/pnas.161283998 11447294
6. Wang Y, Seemann J, Pypaert M, Shorter J, Warren G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 2003;22: 3279–3290. doi: 10.1093/emboj/cdg317 12839990
7. Wang Y, Satoh A, Warren G. Mapping the functional domains of the Golgi stacking factor GRASP65. J Biol Chem. 2005;280: 4921–4928. doi: 10.1074/jbc.M412407200 15576368
8. Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking[J]. J Cell Biol. 2010;188(2): 237–251. doi: 10.1083/jcb.200907132 20083603
9. He S, Niu G, Shang J, Deng Y, Wan Z, Zhang C, et al. The oncogenic Golgi phosphoprotein 3 like overexpression is associated with cisplatin resistance in ovarian carcinoma and activating the NF-kappaB signaling pathway. J Exp Clin Canc Res. 2017;36(1):137.
10. Feng Y, He F, Wu H, Huang H, Zhang L, Han X, et al. GOLPH3L is a Novel Prognostic Biomarker for Epithelial Ovarian Cancer. J Cancer. 2015;6: 893–900. doi: 10.7150/jca.11865 26284141
11. Sun J, Yang X, Zhang R, Liu S, Gan X, Xi X, et al. GOLPH3 induces epithelial-mesenchymal transition via Wnt/beta-catenin signaling pathway in epithelial ovarian cancer. Cancer Med. 2017;6: 834–844. doi: 10.1002/cam4.1040 28332316
12. Chang SH, Hong SH, Jiang HL, Minai-Tehrani A, Yu KN, Lee JH, et al. GOLGA2/GM130, cis-Golgi matrix protein, is a novel target of anticancer gene therapy. Mol Ther. 2012;20: 2052–2063. doi: 10.1038/mt.2012.125 22735382
13. Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res. 2014;12: 1704–1716. doi: 10.1158/1541-7786.MCR-14-0291-T 25086069
14. Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004; 23(16): 2746–2756. doi: 10.1038/sj.onc.1207513 15077138
15. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA- Cancer J Clin. 2018;68: 284–296. doi: 10.3322/caac.21456 29809280
16. Zaid H, Silbermann M, Amash A, Gincel D, Abdel-Sattar E, Sarikahya NB. Medicinal Plants and Natural Active Compounds for Cancer Chemoprevention/Chemotherapy. eCAM. 2017;2017: 7952417. doi: 10.1155/2017/7952417 28491112
17. Greenwell M, Rahman PK. Medicinal Plants: Their Use in Anticancer Treatment. International journal of pharmaceutical sciences and research. 2015;6: 4103–4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12 26594645
18. Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, et al. Cancer prevention with natural compounds. Semin Oncol. 2010;37: 258–281. doi: 10.1053/j.seminoncol.2010.06.014 20709209
19. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27: 2712–2725. doi: 10.1200/JCO.2008.20.6235 19414669
20. Woo HJ, Kang HK, Nguyen TT, Kim GE, Kim YM, Park JS, et al. Synthesis and characterization of ampelopsin glucosides using dextransucrase from Leuconostoc mesenteroides B-1299CB4: glucosylation enhancing physicochemical properties. Enzyme Microb Tech. 2012;51: 311–318.
21. Liu B, Tan X, Liang J, Wu S, Liu J, Zhang Q, et al. A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep. 2014;4: 7041. doi: 10.1038/srep07041 25391369
22. Ji FJ, Tian XF, Liu XW, Fu LB, Wu YY, Fang XD, et al. Dihydromyricetin induces cell apoptosis via a p53-related pathway in AGS human gastric cancer cells. Genet Mol Res. 2015;14: 15564–15571. doi: 10.4238/2015.December.1.7 26634523
23. Jiang L, Zhang Q, Ren H, Ma S, Lu C, Liu B, et al. Dihydromyricetin Enhances the Chemo-Sensitivity of Nedaplatin via Regulation of the p53/Bcl-2 Pathway in Hepatocellular Carcinoma Cells. PloS one. 2015;10: e0124994. doi: 10.1371/journal.pone.0124994 25915649
24. Xu Y, Wang S, Chan HF, Lu H, Lin Z, He C, et al. Dihydromyricetin Induces Apoptosis and Reverses Drug Resistance in Ovarian Cancer Cells by p53-mediated Downregulation of Survivin. Sci Rep. 2017;7: 46060. doi: 10.1038/srep46060 28436480
25. Li T, You H, Mo X, He W, Tang X, Jiang Z, et al. GOLPH3 Mediated Golgi Stress Response in Modulating N2A Cell Death upon Oxygen-Glucose Deprivation and Reoxygenation Injury. Mol neurobiol. 2016;53: 1377–1385. doi: 10.1007/s12035-014-9083-0 25633094
26. Jiang Z, Hu Z, Zeng L, Lu W, Zhang H, Li T, et al. The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria? Free Radic Biol Med. 2011;50(8): 907–917. doi: 10.1016/j.freeradbiomed.2011.01.011 21241794
27. Hicks SW, Machamer CE. Golgi structure in stress sensing and apoptosis. Biochimica et biophysica acta. 2005;1744: 406–414. doi: 10.1016/j.bbamcr.2005.03.002 15979510
28. Mancini M, Machamer CE, Roy S, Nicholson DW, Thornberry NA, Casciola-Rosen LA, et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J cell biol. 2000;149: 603–612. doi: 10.1083/jcb.149.3.603 10791974
29. Lane JD, Lucocq J, Pryde J, Barr FA, Woodman PG, Allan VJ, et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J cell biol. 2002;156: 495–509. doi: 10.1083/jcb.200110007 11815631
30. Preisinger C, Korner R, Wind M, Lehmann WD, Kopajtich R, Barr FA. Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO J. 2005;24(4): 753–765. doi: 10.1038/sj.emboj.7600569 15678101
31. AlAjmi MF, Rehman MT, Hussain A, Rather GM. Pharmaco-informatics approach for the identification of Polo-like kinase-1 inhibitor from natural sources as anti-cancer agents. Int J biol macromol. 2018;116: 173–181. doi: 10.1016/j.ijbiomac.2018.05.023 29738867
32. Chiu KY, Wu CC, Chia CH, Hsu SL, Tzeng YM. Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms. Cancer lett. 2016;373: 174–184. doi: 10.1016/j.canlet.2015.11.046 26679052
33. Marshall J. Transwell(®) invasion assays. Methods Mol Biol. 2011;769:97–110. doi: 10.1007/978-1-61779-207-6_8 21748672
34. Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis. 2007;28: 233–239. doi: 10.1093/carcin/bgl243 17151090
35. Vinke FP, Grieve AG, Rabouille C. The multiple facets of the Golgi reassembly stacking proteins. Biochem J. 2011;433: 423–433. doi: 10.1042/BJ20101540 21235525
36. Cheng JP, Betin VM, Weir H, Shelmani GM, Moss DK, Lane JD. Caspase cleavage of the Golgi stacking factor GRASP65 is required for Fas/CD95-mediated apoptosis. Cell death dis. 2010;1: e82. doi: 10.1038/cddis.2010.59 21368855
37. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010;15: 183–195. doi: 10.1007/s10495-009-0421-z 19882352
38. Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Method enzymol. 2013;528: 27–48.
39. Veenendaal T, Jarvela T, Grieve AG, van Es JH, Linstedt AD, Rabouille C. GRASP65 controls the cis Golgi integrity in vivo. Biol open. 2014;3: 431–443. doi: 10.1242/bio.20147757 24795147
40. Ahat E, Li J, Wang Y. New Insights Into the Golgi Stacking Proteins. Front Cell Dev Biol. 2019;7: 131. doi: 10.3389/fcell.2019.00131 31380369
41. Walker A, Ward C, Sheldrake TA, Dransfield I, Rossi AG, Pryde JG, et al. Golgi fragmentation during Fas-mediated apoptosis is associated with the rapid loss of GM130. Biochem bioph res co. 2004;316: 6–11.
42. Romagnolo DF, Selmin OI. Flavonoids and cancer prevention: a review of the evidence. J nutr. 2012;31: 206–238.
43. Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Rebollo MP, Alvarez-Franco F, et al. Modulating apoptosis as a target for effective therapy. Mol Immunol. 2006;43: 1065–1079. doi: 10.1016/j.molimm.2005.07.013 16099509
44. Goldsworthy TL, Conolly RB, Fransson-Steen R. Apoptosis and cancer risk assessment. Mutat res. 1996;365: 71–90. doi: 10.1016/s0165-1110(96)90013-5 8898990
45. Xi G, Hu X, Wu B, Jiang H, Young CY, Pang Y, et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer lett. 2011;307: 141–148. doi: 10.1016/j.canlet.2011.03.026 21511395
46. Nakagomi S, Barsoum MJ, Bossy-Wetzel E, Sutterlin C, Malhotra V, Lipton SA. A Golgi fragmentation pathway in neurodegeneration. Neurobiol dis. 2008;29: 221–231. doi: 10.1016/j.nbd.2007.08.015 17964175
47. Tang D, Yuan H, Wang Y. The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic. 2010;11(6): 827–842. doi: 10.1111/j.1600-0854.2010.01055.x 20214750
48. Ahat E, Xiang Y, Zhang X, Bekier II, Wang Y. GRASP depletion-mediated Golgi destruction decreases cell adhesion and migration via the reduction of alpha5beta1 integrin. Mol Biol Cell. 2019;30(6): 766–777. doi: 10.1091/mbc.E18-07-0462 30649990
49. Sutterlin C, Polishchuk R, Pecot M, Malhotra V. The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol Biol Cell. 2005;16(7): 3211–3222. doi: 10.1091/mbc.E04-12-1065 15888544
50. Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem. 2002;277(33): 29803–29809. doi: 10.1074/jbc.M204185200 12065594
51. Li T, You H, Zhang J, Mo X, He W, Chen Y, et al. Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus. Mol Neurobiol. 2014;49(3): 1449–1459. doi: 10.1007/s12035-013-8624-2 24395131
52. Cao Q, Mao ZD, Shi YJ, Chen Y, Sun Y, Zhang Q, et al. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway. Oncotarget. 2016;7: 77468–77481. doi: 10.18632/oncotarget.12684 27764812
53. Zhang S, Qi Y, Xu Y, Han X, Peng J, Liu K, et al. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem int. 2013;63: 522–532. doi: 10.1016/j.neuint.2013.08.008 24012531
54. Liu J, Lin A. Role of JNK activation in apoptosis: a double-edged sword. Cell res. 2005;15: 36–42. doi: 10.1038/sj.cr.7290262 15686625
55. Bisel B, Wang Y, Wei JH, Xiang Y, Tang D, Miron-Mendoza M, et al. ERK regulates Golgi and centrosome orientation towards the leading edge through GRASP65. J cell biol. 2008;182: 837–843. doi: 10.1083/jcb.200805045 18762583
56. Yao Z, Seger R. The ERK signaling cascade—views from different subcellular compartments. BioFactors (Oxford, England). 2009;35: 407–416.
57. Cervigni RI, Bonavita R, Barretta ML, Spano D, Ayala I, Nakamura N, et al. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J cell sci. 2015;128: 2249–2260. doi: 10.1242/jcs.164871 25948586
58. Yoshimura S, Yoshioka K, Barr FA, Lowe M, Nakayama K, Ohkuma S, et al. Convergence of cell cycle regulation and growth factor signals on GRASP65. J biol chem. 2005;280: 23048–23056. doi: 10.1074/jbc.M502442200 15834132
59. Wen XR, Tang M, Qi DS, Huang XJ, Liu HZ, Zhang F, et al. Butylphthalide Suppresses Neuronal Cells Apoptosis and Inhibits JNK-Caspase3 Signaling Pathway After Brain Ischemia /Reperfusion in Rats. Cell mol neurobiol. 2016;36: 1087–1095. doi: 10.1007/s10571-015-0302-7 27015680
60. Zhu BL, Xie CL, Hu NN, Zhu XB, Liu CF. Inhibiting of GRASP65 Phosphorylation by DL-3-N-Butylphthalide Protects against Cerebral Ischemia-Reperfusion Injury via ERK Signaling. Behav Neurol. 2018;2018: 5701719. doi: 10.1155/2018/5701719 30154935
61. Lin B, Yu H, Lin YT, Cai C, Lu HQ, Zhu XB. Suppression of GRASP65 phosphorylation by tetrahydrocurcumin protects against cerebral ischemia/reperfusion injury via ERK signaling. Mol Med Rep. 2016;14(5): 4775–4780. doi: 10.3892/mmr.2016.5816 27748926
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy