A caspase-6-cleaved fragment of Glial Fibrillary Acidic Protein as a potential serological biomarker of CNS injury after cardiac arrest
Autoři:
Ditte S. Jonesco aff001; Christian Hassager aff002; Martin Frydland aff002; Jesper Kjærgaard aff002; Morten Karsdal aff001; Kim Henriksen aff001
Působiště autorů:
Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
aff001; Department of Cardiology B, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
aff002
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224633
Souhrn
Blood levels of Glial Fibrillary Acidic protein (GFAP) reflect processes associated with different types of CNS injury. Evidence suggests that GFAP is cleaved by caspases during CNS injury, hence positioning GFAP fragments as potential biomarkers of injury-associated processes. We set out to develop an assay detecting the neo-epitope generated by caspase-6 cleavage of GFAP (GFAP-C6), and to assess the ability of GFAP-C6 to reflect pathological processes in patients suffering a cardiac arrest and subsequent global cerebral ischemia. Anti-GFAP-C6 antibodies recognized their specific target sequence, and dilution and spike recoveries in serum were within limits of ±20% reflecting high precision and accuracy of measurements. Intra- and inter-assay CVs were below limits of 10% and 15%, respectively. Serological levels of GFAP-C6 were significantly elevated 72 hours after CA (Mean±SD) (20.39±10.59 ng/mL) compared to time of admission (17.79±10.77 ng/mL, p<0.0001), 24 hours (17.40±7.99 ng/mL, p<0.0001) and 48 hours (17.87±8.56 ng/mL, p<0.0001) after CA, but were not related to neurological outcome at day 180. GFAP-C6 levels at admission, 24, 48, and 72 hours after cardiac arrest correlated with two proteolytic fragments of tau, tau-A (r = 0.30, r = 0.40, r = 0.50, r = 0.53, p < 0.0001) and tau-C (r = 54, r = 0.48, r = 0.55, r = 0.54, p < 0.0001), respectively. GFAP-C6 levels did not correlate with other markers of CNS damage; total tau, NSE and S100B. In conclusion, we developed the first assay detecting a caspase-6 cleaved fragment of GFAP in blood. Increased levels at 72 hours after cardiac arrest as well as moderate correlations between GFAP-C6 and two other blood biomarkers of neurodegeneration suggest the ability of GFAP-C6 to reflect pathological processes of the injured brain. Investigations into the potential of GFAP-C6 in other types of CNS injury are warranted.
Klíčová slova:
Biomarkers – Brain damage – Central nervous system – Cerebral ischemia – Enzyme-linked immunoassays – Hemoglobin – Serology – Traumatic brain injury
Zdroje
1. Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, et al. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131(3):323–45. doi: 10.1007/s00401-015-1513-1 26671410
2. Burda JE, Bernstein AM, Sofroniew M V, Angeles L. Astrocyte roles in TBI. Exp Neurol. 2017;275(0 3):305–15.
3. Koizumi S, Hirayama Y, Morizawa YM. New roles of reactive astrocytes in the brain; an organizer of cerebral ischemia. Neurochem Int. 2018;119:107–14. doi: 10.1016/j.neuint.2018.01.007 29360494
4. Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, et al. GFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. Vol. 30, Journal of Neurotrauma. 2013. p. 1490–7. doi: 10.1089/neu.2013.2883 23489259
5. McMahon PJ, Panczykowski DM, Yue JK, Puccio AM, Inoue T, Sorani MD, et al. Measurement of the Glial Fibrillary Acidic Protein and Its Breakdown Products GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to Computed Tomography and Magnetic Resonance Imaging. J Neurotrauma. 2015;32(8):527–33. doi: 10.1089/neu.2014.3635 25264814
6. Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S. Elevated Levels of Serum Glial Fibrillary Acidic Protein Breakdown Products in Mild and Moderate Traumatic Brain Injury are Associated With Intracranial Lesions and Neurosurgical Intervention. Ann Emerg Med. 2013;59(6):3–24.
7. Vos PE, Lamers KJB, Hendriks JCM, van Haaren M, Beems T, Zimmerman C, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62:1303–10. doi: 10.1212/01.wnl.0000120550.00643.dc 15111666
8. Nylén K, Öst M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240(1–2):85–91. doi: 10.1016/j.jns.2005.09.007 16266720
9. Vos PE, Jacobs B, Andriessen TMJC, Lamers KJB, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: An observational cohort study. Neurology. 2010;75:1786–93. doi: 10.1212/WNL.0b013e3181fd62d2 21079180
10. Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation. 2014;85(12):1654–61. doi: 10.1016/j.resuscitation.2014.09.007 25260722
11. Mörtberg E, Zetterberg H, Nordmark J, Blennow K, Rosengren L, Rubertsson S. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation. 2011;82(1):26–31. doi: 10.1016/j.resuscitation.2010.10.011 21071131
12. Kaneko T, Kasaoka S, Miyauchi T, Fujita M, Oda Y, Tsuruta R, et al. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation. 2009;80(7):790–4. doi: 10.1016/j.resuscitation.2009.04.003 19411130
13. Hayashida H, Kaneko T, Kasaoka S, Oshima C, Miyauchi T, Fujita M, et al. Comparison of the predictability of neurological outcome by serum procalcitonin and glial fibrillary acidic protein in postcardiac-arrest patients. Neurocrit Care. 2010;12(2):252–7. doi: 10.1007/s12028-009-9318-5 20033352
14. Ren C, Kobeissy F, Alawieh A, Li N, Li N, Zibara K, et al. Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci Rep. 2016;14(6):1–9.
15. Brouns R, De Vil B, Cras P, De Surgeloose D, Mariën P, De Deyn PP. Neurobiochemical markers of brain damage in cerebrospinal fluid of acute ischemic stroke patients. Clin Chem. 2010;56(3):451–8. doi: 10.1373/clinchem.2009.134122 19959621
16. Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018;136:821–53. doi: 10.1007/s00401-018-1932-x 30488277
17. Lin NH, Messing A, Perng M-D. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One. 2017;12(7):1–21.
18. Chen M-H, Hagemann TL, Quinlan RA, Messing A, Perng M-D. Caspase Cleavage of GFAP Produces an Assembly-Compromised Proteolytic Fragment that Promotes Filament Aggregation. ASN Neuro. 2013;5(5):AN20130032.
19. Acarin L, Villapol S, Faiz M, Rohn TT, Castellano B, González B. Caspase-3 Activation in Astrocytes Following Postnatal Excitotoxic Damage Correlates With Cytoskeletal Remodeling but not With Cell Death or Proliferation. 2007;55:954–65.
20. Mouser PE, Head E, Ha KH, Rohn TT. Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer’s disease brain. Am J Pathol. 2006;168(3):936–46. doi: 10.2353/ajpath.2006.050798 16507909
21. Rohn TT, Catlin LW, Poon WW. Caspase-cleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer’s disease brain. Int J Clin Exp Pathol. 2013;6(1):41–8. 23236541
22. Aras R, Barron AM, Pike CJ. Caspase activation contributes to astrogliosis. Brain Res. 2012;1450:102–15. doi: 10.1016/j.brainres.2012.02.056 22436850
23. Klaiman G, Champagne N, LeBlanc AC. Self-activation of Caspase-6 in vitro and in vivo: Caspase-6 activation does not induce cell death in HEK293T cells. Biochim Biophys Acta—Mol Cell Res. 2009;1793(3):592–601.
24. Klaiman G, Petzke TL, Hammond J, LeBlanc AC. Targets of Caspase-6 Activity in Human Neurons and Alzheimer Disease. Mol Cell Proteomics. 2008;7(8):1541–55. doi: 10.1074/mcp.M800007-MCP200 18487604
25. Rohn TT, Cusack SM, Kessinger SR, Oxford JT. Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res. 2004;295(1):215–25. doi: 10.1016/j.yexcr.2003.12.029 15051504
26. Guo H, Albrecht S, Bourdeau M, Petzke T, Bergeron C, LeBlanc AC. Active Caspase-6 and Caspase-6-Cleaved Tau in Neuropil Threads, Neuritic Plaques, and Neurofibrillary Tangles of Alzheimer’s Disease. Am J Pathol. 2004;165(2):523–31. doi: 10.1016/S0002-9440(10)63317-2 15277226
27. Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: Implications for neuroprotection. Prog Neurobiol. 2004;72(2):111–27. doi: 10.1016/j.pneurobio.2004.02.001 15063528
28. Broe M, Kril J, Halliday GM. Astrocytic degeneration relates to the severity of disease in frontotemporal dementia. Brain. 2004;127(10):2214–20.
29. Johnson EA, Svetlov SI, Wang KKW, Hayes RL, Pineda JA. Cell-specific DNA fragmentation may be attenuated by a survivin-dependent mechanism after traumatic brain injury in rats. Exp Brain Res. 2005;167(1):17–26. doi: 10.1007/s00221-005-2362-2 16193270
30. Matsushita K, Meng W, Wang X, Asahi M, Asahi K, Moskowitz MA, et al. Evidence for Apoptosis After Intracerebral Hemorrhage in Rat Striatum. J Cereb Blood Flow Metab. 2000;20:396–404. doi: 10.1097/00004647-200002000-00022 10698078
31. Chen M, Jin K, Kawaguchi K, Pei W, Greenberg DA, Chen J, et al. Early Detection of DNA Strand Breaks in the Brain After Transient Focal Ischemia: Implications for the Role of DNA Damage in Apoptosis and Neuronal Cell Death. J Neurochem. 1997;69(1):232–45. doi: 10.1046/j.1471-4159.1997.69010232.x 9202315
32. Krupinski J, Lopez E, Marti E, Ferrer I. Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol Dis. 2000;7(4):332–42. doi: 10.1006/nbdi.2000.0310 10964605
33. Noorbakhsh F, Ramachandran R, Barsby N, Ellestad KK, LeBlanc A, Dickie P, et al. MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. FASEB J. 2010;24:1799–812. doi: 10.1096/fj.09-147819 20097875
34. Nielsen N, Wetterslev J, Al-Subaie N, Andersson B, Bro-Jeppesen J, Bishop G, et al. Target temperature management after out-of-hospital cardiac arrest—A randomized, parallel-group, assessor-blinded clinical trial—Rationale and design. Am Heart J. 2012;163(4):541–8. doi: 10.1016/j.ahj.2012.01.013 22520518
35. Combet C, Blanchet C, Geourjon C, Deléage G. NPS @: Network Protein Sequence Analysis. Trends Biochem Sci. 2000;25(March):147–50.
36. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted Temperature Management at 33°C versus 36°C after Cardiac Arrest. N Engl J Med. 2013;369(23):2197–206. doi: 10.1056/NEJMoa1310519 24237006
37. Nielsen N, Winkel P, Cronberg T, Erlinge D, Friberg H, Gasche Y, et al. Detailed statistical analysis plan for the target temperature management after out-of-hospital cardiac arrest trial. Trials. 2013;14(1):300.
38. Devaux Y, Dankiewicz J, Salgado-Somoza A, Stammet P, Collignon O, Gilje P, et al. Association of Circulating MicroRNA-124-3p Levels With Outcomes After Out-of-Hospital Cardiac Arrest. JAMA Cardiol. 2016;1(3):305–13. doi: 10.1001/jamacardio.2016.0480 27438111
39. Komatsu T, Kinoshita K, Sakurai A, Moriya T, Yamaguchi J, Sugita A, et al. Shorter time until return of spontaneous circulation is the only independent factor for a good neurological outcome in patients with postcardiac arrest syndrome. Emerg Med J. 2014;31:549–55. doi: 10.1136/emermed-2013-202457 23639589
40. Dell’Anna AM, Sandroni C, Lamanna I, Belloni I, Donadello K, Creteur J, et al. Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Ann Intensive Care. 2017;7.
41. Aldhoon B, Melenovsky V, Kettner J, Kautzner J. Clinical predictors of outcome in survivors of out-of-hospital cardiac arrest treated with hypothermia. Cor Vasa. 2012;54:e68–75.
42. Iesu E, Franchi F, Cavicchi FZ, Pozzebon S, Fontana V, Mendoza M, et al. Acute liver dysfunction after cardiac arrest. PLoS One. 2018;13(11).
43. Nikolac N. Lipemia: Causes, interference mechanisms, detection and management. Biochem Medica. 2014;24(1):57–67.
44. Elston MS, Sehgal S, Toit S Du, Yarndley T, Conaglen J V. Factitious Graves’ disease due to biotin immunoassay interference-A case and review of the literature. J Clin Endocrinol Metab. 2016;101(9):3251–5. doi: 10.1210/jc.2016-1971 27362288
45. Simoni J, Simoni G, Lox CD, Prien SD, Shires GT. Hemoglobin interference with an enzyme-linked immunosorbent assay for the detection of tumor necrosis factor-alpha. Anal Chim Acta. 1995;313:1–14.
46. Cao W, Sun X, Gao Y, Tang L, Tang B. Effect of Repeated Freeze-Thaw on Serum Biomarkers Associated with Eye Disease. Med Sci Monit. 2018;24:4481–8. doi: 10.12659/MSM.908567 29958264
47. Mitchell BL, Li CI, Yasui Y, Lampe PD, Fitzpatrick AL. Impact of Freeze-thaw Cycles and Storage Time on Plasma Samples Used in Mass Spectrometry Based Biomarker Discovery Projects. Cancer Inform. 2005;1:98–104. 19305635
48. Lee JE, Kim SY, Shin SY. Effect of Repeated Freezing and Thawing on Biomarker Stability in Plasma and Serum Samples. Osong Public Heal Res Perspect. 2015;6(6):357–62.
49. Gul SS, Huesgen KW, Wang KK, Mark K, Tyndall JA. Prognostic utility of neuroinjury biomarkers in post out-of-hospital cardiac arrest (OHCA) patient management. Med Hypotheses. 2017;105:34–47. doi: 10.1016/j.mehy.2017.06.016 28735650
50. Grand J, Kjaergaard J, Nielsen N, Friberg H, Cronberg T, Bro-Jeppesen J, et al. Serum tau fragments as predictors of death or poor neurological outcome after out-of-hospital cardiac arrest. Biomarkers. 2019;0(0):1–24.
51. Akpan N, Serrano-saiz E, Zacharia BE, Otten ML, Andrew F, Snipas SJ, et al. Intranasal delivery of caspase-9 inhibitor reduces caspase-6- dependent axon/neuron loss and improves neurological function after stroke. 2011;31(24):8894–904.
52. Krajewska M, Rosenthal RE, Mikolajczyk J, Stennicke HR, Wiesenthal T, Mai J, et al. Early processing of Bid and caspase-6, -8, -10, -14 in the canine brain during cardiac arrest and resuscitation. Exp Neurol. 2004;189(2):261–79. doi: 10.1016/j.expneurol.2004.05.020 15380478
53. Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VRM, Deakin CD, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines for Post-resuscitation Care 2015. Resuscitation. 2015;95:202–22. doi: 10.1016/j.resuscitation.2015.07.018 26477702
54. Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Åneman A, et al. Neuron-Specific Enolase as a Predictor of Death or Poor Neurological Outcome After Out-of-Hospital Cardiac Arrest and Targeted Temperature Management at 33°C and 36°C. J Am Coll Cardiol. 2015;65(19):2104–14. doi: 10.1016/j.jacc.2015.03.538 25975474
55. Van Eijk JJJ, Van Everbroeck B, Abdo WF, Kremer BPH, Verbeek MM. CSF neurofilament proteins levels are elevated in sporadic Creutzfeldt-Jakob disease. J Alzheimer’s Dis. 2010;21:569–76.
56. Jesse S, Steinacker P, Cepek L, Arnim C V., Tumani H, Lehnert S, et al. Glial fibrillary acidic protein and protein S-100B: Different concentration pattern of glial proteins in cerebrospinal fluid of patients with alzheimer’s disease and creutzfeldt-jakob disease. J Alzheimer’s Dis. 2009;17(3):541–51.
57. Fukuyama R, Izumoto T, Fushiki S. The Cerebrospinal Fluid Level of Glial Fibrillary Acidic Protein Is Increased in Cerebrospinal Fluid from Alzheimer’s Disease Patients and Correlates with Severity of Dementia. Eur Neurol. 2001;46:35–8. doi: 10.1159/000050753 11455181
58. Sathe G, Na CH, Renuse S, Madugundu AK, Albert M, Moghekar A, et al. Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer’s Disease. Proteomics Clin Appl. 2018;1800105(1800105):1–12.
59. Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N, et al. Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem. 2016;136:258–61. doi: 10.1111/jnc.13399 26485083
60. Oeckl P, Halbgebauer S, Anderl-Straub S, Steinacker P, Hussa AM, Neugebauer, Hermann von Arnim CAF, et al. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J Alzheimer’s Dis. 2019;67(2):481–8.
61. Leblanc AC. Caspase-6 as a novel early target in the treatment of Alzheimer’s disease. Eur J Neurosci. 2013;37(12):2005–18. doi: 10.1111/ejn.12250 23773070
62. Henriksen K, Byrjalsen I, Christiansen C, Karsdal MA. Relationship between serum levels of tau fragments and clinical progression of Alzheimer’s disease. J Alzheimer’s Dis. 2015;43(4):1331–41.
63. Henriksen K, Wang Y, Sørensen MG, Barascuk N, Suhy J, Pedersen JT, et al. An Enzyme-Generated Fragment of Tau Measured in Serum Shows an Inverse Correlation to Cognitive Function. PLoS One. 2013;8(5):e64990. doi: 10.1371/journal.pone.0064990 23717682
64. Shahim P, Linemann T, Inekci D, Karsdal MA, Blennow K, Tegner Y, et al. Serum Tau Fragments Predict Return to Play in Concussed Professional Ice Hockey Players. J Neurotrauma. 2016;33(22):1995–9. doi: 10.1089/neu.2014.3741 25621407
65. Inekci D, Henriksen K, Linemann T, Bisgaard C, Karsdal MA, Habib A, et al. Serum Fragments of Tau for the Differential Diagnosis of Alzheimer’s Disease. Curr Alzheimer Res. 2015;12:829–36. doi: 10.2174/1567205012666150710111211 26159200
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy