#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say


Autoři: Michelle E. Anderson aff001;  Jessica Mavica aff001;  Lewis Shackleford aff001;  Ilona Flis aff001;  Sophia Fochler aff001;  Sanjay Basu aff001;  Luke Alphey aff001
Působiště autorů: Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224857

Souhrn

Culex quinquefasciatus Say is an opportunistic blood feeder with a wide geographic distribution which is also a major vector for a range of diseases of both animals and humans. CRISPR/Cas technologies have been applied to a wide variety of organisms for both applied and basic research purposes. CRISPR/Cas methods open new possibilities for genetic research in non-model organisms of public health importance. In this work we have adapted microinjection techniques commonly used in other mosquito species to Culex quinquefasciatus, and have shown these to be effective at generating homozygous knock-out mutations of a target gene in one generation. This is the first description of the kmo gene and mutant phenotype in this species.

Klíčová slova:

Blood – Culex quinquefasciatus – Embryos – Larvae – Mosquitoes – Mutation – Polymerase chain reaction – Microinjection


Zdroje

1. Lura T, Cummings R, Velten R, De Collibus K, Morgan T, Nguyen K, et al. Host (avian) biting preference of southern California Culex mosquitoes (Diptera: Culicidae). J Med Entomol. 2012;49(3):687–96. Epub 2012/06/12. doi: 10.1603/me11177 22679878.

2. Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg. 2009;80(2):268–78. Epub 2009/02/05. 19190226.

3. Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM. "Bird biting" mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011;11(7):1577–85. doi: 10.1016/j.meegid.2011.08.013 WOS:000297126800008. 21875691

4. Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 2019;13(1):e0006822. Epub 2019/01/04. doi: 10.1371/journal.pntd.0006822 30605475; PubMed Central PMCID: PMC6317787.

5. Fotakis EA, Chaskopoulou A, Grigoraki L, Tsiamantas A, Kounadi S, Georgiou L, et al. Analysis of population structure and insecticide resistance in mosquitoes of the genus Culex, Anopheles and Aedes from different environments of Greece with a history of mosquito borne disease transmission. Acta Trop. 2017;174:29–37. Epub 2017/06/14. doi: 10.1016/j.actatropica.2017.06.005 28606820.

6. Jones CM, Machin C, Mohammed K, Majambere S, Ali AS, Khatib BO, et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. 2012;5(1):78. doi: 10.1186/1756-3305-5-78 22520274

7. Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLOS ONE. 2018;13(6):e0199615. doi: 10.1371/journal.pone.0199615 29944713

8. Alphey L. Genetic Control of Mosquitoes. Annual Review of Entomology. 2014;59:205–24. doi: 10.1146/annurev-ento-011613-162002 24160434

9. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci. 2009;34(8):401–7. Epub 2009/08/04. doi: 10.1016/j.tibs.2009.05.002 19646880.

10. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, et al. Methodologies for Improving HDR Efficiency. Front Genet. 2018;9:691. Epub 2019/01/29. doi: 10.3389/fgene.2018.00691 30687381; PubMed Central PMCID: PMC6338032.

11. Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013;4(1):220–8. Epub 2013/07/06. doi: 10.1016/j.celrep.2013.06.020 23827738; PubMed Central PMCID: PMC3714591.

12. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78. Epub 2014/06/07. doi: 10.1016/j.cell.2014.05.010 24906146; PubMed Central PMCID: PMC4343198.

13. Li M, Bui M, Akbari OS. Embryo Microinjection and Transplantation Technique for Nasonia vitripennis Genome Manipulation. J Vis Exp. 2017;(130). Epub 2018/01/25. doi: 10.3791/56990 29364231; PubMed Central PMCID: PMC5908372.

14. Sharma A, Heinze SD, Wu Y, Kohlbrenner T, Morilla I, Brunner C, et al. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science. 2017;356(6338):642–5. Epub 2017/05/13. doi: 10.1126/science.aam5498 28495751.

15. Han Q, Calvo E, Marinotti O, Fang J, Rizzi M, James AA, et al. Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol. 2003;12(5):483–90. Epub 2003/09/17. 12974953; PubMed Central PMCID: PMC2629591.

16. Aryan A, Anderson MA, Myles KM, Adelman ZN. TALEN-based gene disruption in the dengue vector Aedes aegypti. PLoS One. 2013;8(3):e60082. Epub 2013/04/05. doi: 10.1371/journal.pone.0060082 23555893; PubMed Central PMCID: PMC3605403.

17. Yamamoto DS, Sumitani M, Hatakeyama M, Matsuoka H. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis. Transgenic Res. 2018;27(1):51–60. Epub 2018/01/20. doi: 10.1007/s11248-018-0057-2 29349579.

18. Li M, Li T, Liu N, Raban R, Wang X, Akbari OS. Methods for the generation of heritable germline mutations in the disease vector Culex quinquefasciatus using CRISPR/Cas9. bioRxiv. 2019.

19. Itokawa K, Komagata O, Kasai S, Ogawa K, Tomita T. Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep. 2016;6:24652. Epub 2016/04/21. doi: 10.1038/srep24652 27095599; PubMed Central PMCID: PMC4837413.

20. Allen ML, Christensen BM. Flight muscle-specific expression of act88F: GFP in transgenic Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Int. 2004;53(4):307–14. Epub 2004/10/07. doi: 10.1016/j.parint.2004.04.002 15464440.

21. Allen ML, O'Brochta DA, Atkinson PW, Levesque CS. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2001;38(5):701–10. Epub 2001/10/03. doi: 10.1603/0022-2585-38.5.701 11580043.

22. Coates CJ, Jasinskiene N, Miyashiro L, James AA. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. 1998;95(7):3748–51. doi: 10.1073/pnas.95.7.3748 J Proceedings of the National Academy of Sciences. 9520438

23. Fuchs S, Nolan T, Crisanti A. Mosquito transgenic technologies to reduce Plasmodium transmission. Methods Mol Biol. 2013;923:601–22. Epub 2012/09/20. doi: 10.1007/978-1-62703-026-7_41 22990807.

24. Shen MW, Arbab M, Hsu JY, Worstell D, Culbertson SJ, Krabbe O, et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. 2018;563(7733):646–51. Epub 2018/11/09. doi: 10.1038/s41586-018-0686-x 30405244.

25. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42(Web Server issue):W401–7. Epub 2014/05/28. doi: 10.1093/nar/gku410 24861617; PubMed Central PMCID: PMC4086086.

26. Oberhofer G, Ivy T, Hay BA. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci U S A. 2019;116(13):6250–9. Epub 2019/02/15. doi: 10.1073/pnas.1816928116 30760597; PubMed Central PMCID: PMC6442612.

27. Farasat I, Salis HM. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation. PLoS Comput Biol. 2016;12(1):e1004724. Epub 2016/01/30. doi: 10.1371/journal.pcbi.1004724 26824432; PubMed Central PMCID: PMC4732943.

28. Handler AM, Harrell RA 2nd. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol Biol. 1999;8(4):449–57. Epub 2000/01/15. 10634970.

29. Eckermann KN, Ahmed HMM, KaramiNejadRanjbar M, Dippel S, Ogaugwu CE, Kitzmann P, et al. Hyperactive piggyBac transposase improves transformation efficiency in diverse insect species. Insect Biochem Mol Biol. 2018;98:16–24. Epub 2018/04/14. doi: 10.1016/j.ibmb.2018.04.001 29653176.

30. Gregory M, Alphey L, Morrison NI, Shimeld SM. Insect transformation with piggyBac: getting the number of injections just right. Insect Mol Biol. 2016;25(3):259–71. Epub 2016/03/31. doi: 10.1111/imb.12220 27027400; PubMed Central PMCID: PMC4982070.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#