#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Modeling of inter-organizational coordination dynamics in resilience planning of infrastructure systems: A multilayer network simulation framework


Autoři: Qingchun Li aff001;  Shangjia Dong aff001;  Ali Mostafavi aff001
Působiště autorů: Zachry Department of Civil and Environmental Engineering, Urban Resilience, Networks, and Informatics Lab, Texas A&M University, College Station, Texas, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224522

Souhrn

This paper proposes and tests a multilayer framework for simulating the network dynamics of inter-organizational coordination among interdependent infrastructure systems (IISs) in resilience planning. Inter-organizational coordination among IISs (such as transportation, flood control, and emergency management) would greatly affect the effectiveness of resilience planning. Hence, it is important to examine and understand the dynamics of coordination in networks of organizations within and across various systems in resilience planning. To capture the dynamic nature of coordination frequency and the heterogeneity of organizations, this paper proposes a multilayer network simulation framework enabling the characterization of inter-organizational coordination dynamics within and across IISs. In the proposed framework, coordination probabilities are utilized to approximate the varying levels of collaboration among organizations. Based on these derived collaborations, the simulation process perturbs intra-layer or inter-layer links and unveils the level of inter-organizational coordination within and across IISs. To test the proposed framework, the study examined a multilayer collaboration network of 35 organizations from five infrastructure systems within Harris County, Texas, based on the data gathered from a survey in the aftermath of Hurricane Harvey. The results indicate that prior to Hurricane Harvey: (1) coordination among organizations across different infrastructure systems is less than the coordination within the individual systems; (2) organizations from the community development system had a low level of coordination for hazard mitigation with organizations in flood control and transportation systems; (3) achieving a greater level of coordination among organizations across infrastructure systems is more difficult and would require a greater frequency of interaction (compared to within-system coordination). The results show the capability of the proposed multilayer network simulation framework to examine inter-organizational coordination dynamics at the system level (e.g., within and across IISs). The assessment of inter-organizational coordination within and across IISs sheds light on important organizational interdependencies in IISs and leads to recommendations for improving the resilience planning process.

Klíčová slova:

Conservation science – Control systems – Flooding – Network analysis – Network resilience – Surveys – Transportation – Transportation infrastructure


Zdroje

1. Masterson JH, Peacock WG, Van Zandt S, Grover H, Schwarz LF, Cooper JT. Planning for community resilience: a handbook for reducing vulnerability to disasters. Island press; 2014.

2. Walker B, Salt D. Resilience thinking: sustaining ecosystems and people in a changing world. Island Press; 2012.

3. Berke P, Newman G, Lee J, Combs T, Kolosna C, Salvesen D. Evaluation of Networks of Plans and Vulnerability to Hazards and Climate Change: A Resilience Scorecard. J Am Plan Assoc. 2015;81(4):287–302.

4. Malecha ML, Brand AD, Berke PR. Spatially evaluating a network of plans and flood vulnerability using a Plan Integration for Resilience Scorecard: A case study in Feijenoord District, Rotterdam, the Netherlands. Land use policy. 2018;78:147–57.

5. Woodruff SC, Regan P. Quality of national adaptation plans and opportunities for improvement. Mitigation and Adaptation Strategies for Global Change. 2019;24(1):53–71.

6. Finn D, Hopkins LD, Wempe M. The information system of plans approach: Using and making plans for landscape protection. Landsc Urban Plan. 2007;81(1–2):132–45.

7. El-Gohary N. Model-based automated value analysis of building projects. Proceedings of the CIB W 2010 Nov (Vol. 78, p. 2010).

8. Taeby M, Zhang L. Stakeholder value systems on disaster resilience of residential buildings. Proceedings of ICCREM 2018: Construction Enterprises and Project Management 2018 Aug 8 (pp. 10–17). Reston, VA: American Society of Civil Engineers.

9. Qian Z. Without zoning: Urban development and land use controls in Houston. Cities. 2010;27(1):31–41.

10. Berke PR, Malecha ML, Yu S, Lee J, Masterson JH. Plan integration for resilience scorecard: evaluating networks of plans in six US coastal cities. Journal of Environmental Planning and Management. 2019;62(5):901–20.

11. Berke P. Why is Houston so Vulnerable to Flooding? [Internet] 2019. https://hazards.colorado.edu/news/research-counts/part-i-why-is-houston-so-vulnerable-to-flooding.

12. Woodruff SC. Coordinating Plans for Climate Adaptation. Journal of Planning Education and Research. 2018;

13. NOAA & NHC. Costliest U.S. tropical cyclones tables updated. NOAA Tech Memo NWS NHC-6 [Internet]. 2018; https://www.nhc.noaa.gov/pdf/nws-nhc-6.pdf; https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf; https://www.nhc.noaa.gov/dcmi.shtml

14. Gao S, Frejinger E, Ben-Akiva M. Adaptive route choices in risky traffic networks: A prospect theory approach. Transp Res Part C Emerg Technol. 2010;18(5):727–40.

15. Dunn S, Wilkinson S, Alderson D, Fowler H, Galasso C. Fragility curves for assessing the resilience of electricity networks constructed from an extensive fault database. Natural Hazards Review. 2017;19(1):04017019.

16. Dueñas-Osorio L, Craig JI, Goodno BJ. Seismic response of critical interdependent networks. Earthq Eng Struct Dyn. 2007;36(2):285–306.

17. Kapucu N. Interorganizational Coordination in Dynamic Context: Networks in Emergency Response Management. Connections. 2005;26(2):33–48.

18. Bourbousson J, R’Kiouak M, Eccles DW. The dynamics of team coordination: A social network analysis as a window to shared awareness. Eur J Work Organ Psychol. 2015;24(5):742–60.

19. Bodin Ö, Crona BI. The role of social networks in natural resource governance: What relational patterns make a difference? Global Environmental Change. 2009;19(3):366–74.

20. Magsino SL. Applications of Social Network Analysis for Building Community Disaster Resilience. Board on Earth Sciences and Resources Division on Earth and Life Studies The National Academic Press, Wahington DC. 2009.

21. Mills M, Álvarez-Romero JG, Vance-Borland K, Cohen P, Pressey RL, Guerrero AM, et al. Linking regional planning and local action: Towards using social network analysis in systematic conservation planning. Biological Conservation. 2014;169:6–13.

22. Zhu J, Mostafavi A. Enhancing resilience in disaster response: A meta-network analysis approach. Proceedings of Construction Research Congress 2018 (Vol. 1, pp. 2250–2259).

23. Fan C, Mostafavi A. Metanetwork Framework for Performance Analysis of Disaster Management System-of-Systems. IEEE Syst J. 2019;1–12.

24. Kaluza P, Vingron M, Mikhailov AS. Self-correcting networks: Function, robustness, and motif distributions in biological signal processing. Chaos. 2008;18(2):026113. doi: 10.1063/1.2945228 18601515

25. Larocca S, Johansson J, Hassel H, Guikema S. Topological Performance Measures as Surrogates for Physical Flow Models for Risk and Vulnerability Analysis for Electric Power Systems. Risk Anal. 2015;35(4):608–23. doi: 10.1111/risa.12281 26018246

26. Albert R, Jeong H, Barabási AL. Error and attack tolerance of complex networks. nature. 2000;406(6794):378. doi: 10.1038/35019019 10935628

27. Larocca S. Modeling the reliability and robustness of critical infrastructure networks [dissertation]. Johns Hopkins University; 2014.

28. Mattsson LG, Jenelius E. Vulnerability and resilience of transport systems—A discussion of recent research. Transp Res Part A Policy Pract. 2015;81:16–34.

29. Dong S, Wang H, Mostfavi A, Gao J. Robust component: a robustness measure that incorporates access to critical facilities under disruptions. Jounal R Soc Interface. 2019; 16(157):20190149.

30. Dong S, Wang H, Mostafizi A, Song X. A Network-of-Networks Percolation Analysis of Cascading Failures in Spatially Co-located Road-Sewer Infrastructure Networks. Phys A Stat Mech Its Appl. 2019:122971.

31. Dong S, Wang H, Mostafizi A, Gao J, Li X. Measuring the topological robustness of transportation networks to disaster-induced failures: A percolation approach. J Infrastruct Syst. 2019; In press.

32. Rasoulkhani K, Mostafavi A. Resilience as an emergent property of human-infrastructure dynamics: A multi-agent simulation model for characterizing regime shifts and tipping point behaviors in infrastructure systems. PLoS One. 2018;13(11):e0207674. doi: 10.1371/journal.pone.0207674 30462719

33. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer networks. J Complex Netw. 2014;2(3):203–71.

34. Cardillo A, Zanin M, Gómez-Gardeñes J, Romance M, García del Amo AJ, Boccaletti S. Modeling the multi-layer nature of the European Air Transport Network: Resilience and passengers re-scheduling under random failures. Eur Phys J Spec Top. 2013;215(1):23–23.

35. Solé-Ribalta A, Gómez S, Arenas A. Congestion Induced by the Structure of Multiplex Networks. Phys Rev Lett. 2016;116(10):108701. doi: 10.1103/PhysRevLett.116.108701 27015514

36. Crucitti P, Latora V, Marchiori M. A topological analysis of the Italian electric power grid. In: Physica A: Statistical Mechanics and its Applications. 2004;338(1–2):92–7.

37. Kinney R, Crucitti P, Albert R, Latora V. Modeling cascading failures in the North American power grid. Eur Phys J B. 2005;46(1):101–7.

38. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage. 2010;52(3):1059–69. doi: 10.1016/j.neuroimage.2009.10.003 19819337

39. Latora V, Marchiori M. Efficient Behavior of Small-World Networks. Physical review letters. 2001;87(19):198701. doi: 10.1103/PhysRevLett.87.198701 11690461

40. Zanin M, Sun X, Wandelt S. Studying the Topology of Transportation Systems through Complex Networks: Handle with Care. J Adv Transp. 2018; doi: 10.1155/2018/3156137

41. De Domenico M, Porter MA, Arenas A. MuxViz: A tool for multilayer analysis and visualization of networks. J Complex Networks. 2015;3(2):159–76.

42. Almquist ZW, Spiro ES, Butts CT. Shifting Attention: Modeling Follower Relationship Dynamics Among Us Emergency Management-Related Organizations During a Colorado Wildfire. In: Social Network Analysis of Disaster Response, Recovery, and Adaptation. 2017 Jan 1 (pp. 93–112). Butterworth-Heinemann.

43. Schweinberger M, Petrescu-Prahova M, Vu DQ. Disaster response on September 11, 2001 through the lens of statistical network analysis. Soc Networks. 2014;37(1):42–55.

44. Campanella TJ. Urban resilience and the recovery of new orleans. J Am Plan Assoc. 2006;72(2):141–6.

45. Aldrich DP. Building resilience: Social capital in post-disaster recovery. University of Chicago Press; 2012.

46. Berardo R, Lubell M. Understanding What Shapes a Polycentric Governance System. Public Adm Rev. 2016;76(5):738–51.

47. Bodin Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Vol. 357, Science. 2017;357(6352):eaan1114.

48. Granovetter M. The Strength of Weak Ties: A Network Theory Revisited. Sociol Theory [Internet]. 1983;1:201. http://www.jstor.org/stable/202051?origin=crossref

49. Chelleri L, Waters JJ, Olazabal M, Minucci G. Resilience trade-offs: addressing multiple scales and temporal aspects of urban resilience. Environ Urban. 2015;27(1):181–98.

50. Chen YZ, Huang ZG, Zhang HF, Eisenberg D, Seager TP, Lai YC. Extreme events in multilayer, interdependent complex networks and control. Sci Rep. 2015;5:17277. doi: 10.1038/srep17277 26612009

51. Shutters ST, Muneepeerakul R, Lobo J. Quantifying urban economic resilience through labour force interdependence. Palgrave Commun. 2015;1:15010.

52. Ulanowicz RE, Goerner SJ, Lietaer B, Gomez R. Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecol Complex. 2009;6(1):27–36.

53. Gunderson LH. Panarchy: Understanding Transformations in Human and Natural Systems. Island press. 2001.

54. Burt RS. Structural Holes and Good Ideas. Am J Sociol. 2004;110(2):349–99.

55. Burt RS. Structural holes: The social structure of competition. Harvard university press; 2009.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#