Effects of the solubility of yeast cell wall preparations on their potential prebiotic properties in dogs
Autoři:
Stephanie de Souza Theodoro aff001; Thaila Cristina Putarov aff001; Caroline Tiemi aff001; Lara Mantovani Volpe aff001; Carlos Alberto Ferreira de Oliveira aff002; Maria Beatriz de Abreu Glória aff003; Aulus Cavalieri Carciofi aff001
Působiště autorů:
Veterinary Medicine and Surgery Department, College of Agrarian and Veterinarian Sciences (FCAV), São Paulo State University–UNESP, Jaboticabal, São Paulo, Brazil
aff001; Biorigin Brasil, Lençois Paulistas, São Paulo, Brazil
aff002; Pharmacy Faculty, Minas Gerais Federal University (UFMG), Belo Horizonte, Minas Gerais, Brazil
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225659
Souhrn
Derivatives of yeast cell wall (YCW) have been studied for their potential prebiotic effects. Recently, new purified and soluble preparations have been developed in an attempt to increase their biological actions. Two YCW preparations, one conventional and another with higher solubility of the mannan oligosaccharide fraction, were evaluated on dogs. One food formulation was used, divided into the following treatments: CON–control, without yeast cell wall addition; YCW–addition of 0.3% of a conventional yeas cell wall extract; YCWs–addition of 0.3% of a yeast cell wall extract with high mannan oligosaccharide solubility. Twenty-four beagle dogs were used, eight per food, distributed on a block design. Blocks lasted 32 days, and TNF-a, IL-6, IL-10, ex vivo production of hydrogen peroxide and nitric oxide by peripheral neutrophils and monocytes, phagocytic index, and fecal IgA were evaluated at the beginning and end of each period. Additionally, nutrient digestibility, feces production and quality, and fermentation products were quantified. The results were evaluated by analysis of variance and compared using the Tukey test (P<0.05), using the basal immunological parameters as a covariate. The inclusion of YCWs reduced fat digestibility (P<0.05), increased the concentration of butyrate and putrescine, and reduced lactate in feces (P<0.05), showing that mannan oligosaccharide solubilization resulted in higher fermentation of this compound and altered the metabolism of the gut microbiota. Lower IL-6 on serum was verified for dogs fed the YCWs diet (P<0.05), suggesting a reduction in the inflammatory activity of dogs. Higher phagocytic index was verified for peripheral monocytes after the intake of the YCW food, suggesting better innate immunity. In conclusion, the solubilization of the mannooligosaccharide fraction alters its interaction with gut microbiota and biological actions in animals, although both yeast cell wall preparations exhibited prebiotic effects on dogs.
Klíčová slova:
Cell walls – Diet – Dogs – Fermentation – Gastrointestinal tract – Monocytes – Neutrophils – Yeast
Zdroje
1. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017; 8(2): 172–184. doi: 10.1080/19490976.2017.1290756 28165863
2. Bibi S, Navarre DA, Sun X, Du M, Rasco B, Zhu M. Beneficial effect of potato consumption on gut microbiota and intestinal epithelial health. Am. J. Potato Res. 2019; https://doi.org/10.1007/s12230-018-09706-3.
3. Maria APJ, Ayane L, Putarov TC, Loureiro BA, Neto BP, Casagrande MF, et al. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. J Anim Sci. 2017; 95(6): 2452–2466. doi: 10.2527/jas.2016.1302 28727033
4. Coman MM, Verdenelli MC, Cecchini C, Belà B, Gramenzi A, Orpianesi C, et al. Probiotic characterization of Lactobacillus isolates from canine faeces. J Appl Microbiol. 2019; 126(4): 1245–1256. doi: 10.1111/jam.14197 30614169
5. Ballesteros-Pomar MD, Arnaiz EG. Papel de los prebióticos y los probióticos en la funcionalidad de la microbiota del paciente con nutrición enteral. Nutr Hosp. 2018; 35(2): 18–26. http://dx.doi.org/10.20960/nh.1956.
6. Delzenne N, Neyrinck A, Cani P. Gut microbiota and metabolic disorders: How prebiotic can work? British Journal of Nutrition. 2013; 109 (2): S81–S85. doi: 10.1017/S0007114512004047 23360884
7. Townsend GE, Han W, Schwalm ND, Raghavan V, Barry NA, Goodman AL, et al. Dietary sugar silences a colonization factor in a mammalian gut symbiont. PNAS. 2019; 116 (1): 233–238. doi: 10.1073/pnas.1813780115 30559205
8. Calabrò S, Carciofi AC, Musco N, Tudisco R, Gomes MOS, Cutrignelli MI. Fermentation characteristics of several carbohydrate sources for dog diets using the in vitro gas production technique. Italian Journal of Animal Science. 2013; 12(1): 21–27.
9. Gouveia EMMF, Silva IS, Nakazato G, Onselem VJV, Corrêa RAC, Araujo FR, et al. Action of phosphorylated mannanoligosaccharides on immune and hematological responses and fecal consistency of dogs experimentally infected with enteropathogenic Escherichia coli strains. Brazilian Journal of Microbiology. 2013; 44 (2): 499–504. doi: 10.1590/S1517-83822013000200027 24294246
10. Spring P, WenK C, Connolly A, Kiers A. A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition. 2015; 3 (7): 1–11. doi: 10.1017/jan.2015.6
11. Northcote DH; Horne RW. The chemical composition and structure of the yeast cell wall. Biochem J. 1952; 51(2): 232–236.2. doi: 10.1042/bj0510232 14944578
12. Aguilar-Uscanga B, François JM. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology. 2003; 37: 268–274. doi: 10.1046/j.1472-765x.2003.01394.x 12904232
13. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004; 17: 259–75; doi: 10.1079/NRR200479 19079930. http://dx.doi.org/ 10.1079/NRR200479.
14. Fowler J, Kakani R, Haq A, Byrd JA, Bailey CA. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge. The Journal of Applied Poultry Research. 2015; 24: 66–72. https://doi.org/10.3382/japr/pfv010.
15. Park SH, Lee SI, Ricke SC. Microbial Populations in Naked Neck Chicken Ceca Raised on Pasture Flock Fed with Commercial Yeast Cell Wall Prebiotics via an Illumina MiSeq Platform. PLOS ONE. 2016; 11(3): e0151944. doi: 10.1371/journal.pone.0151944 26992104
16. Park SH, Lee SI, Kim SA, Christensen K, Ricke SC. Comparison of antibiotic supplementation versus a yeast-based prebiotic on the cecal microbiome of commercial broilers. PLOS ONE. 2017; 12(8): e0182805. https://doi.org/10.1371/ journal.pone.0182805.
17. Schley PD, Field CJ. The immune-enhancing effects of dietary fibres and prebiotics. British Journal of Nutrition. 2002; 87 (2): S221–S230. doi: 10.1079/BJN/2002541
18. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. British Journal of Nutrition. 2010; 104(S2): S1–S63. https://doi.org/10.1017/S0007114510003363.
19. Swanson KS, Grieshop CM, Flickinger EA, Healy H-P, Dawson KA, Merchen NR, et al. Effects of supplemental fructooligosaccharides plus mannan oligosaccharides on immune function and ileal and fecal microbial population in adult dogs. Archives of Animal Nutrition. 2002; 56: 309–318. doi: 10.1080/00039420214344 12462915
20. Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sciences. 2003; 73: 1683–1690. doi: 10.1016/s0024-3205(03)00490-9 12875900
21. Kaisar MMM, Pelgrom LR, van der Ham AJ, Yazdanbakhsh M and Everts B. Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling. Front. Immunol. 2017; 8:1429. doi: 10.3389/fimmu.2017.01429 29163504
22. Vetvicka V, Carlos Oliveira C. β-(1–3)(1–6)-D-glucans Modulate Immune Status and Blood Glucose Levels in Dogs. British Journal of Pharmaceutical Research. 2014; 4(8): 981–991.
23. Podpora B, Świderski F, Sadowska A, Rakowska R, Wasiak-Zys G. Spent brewer’s yeast extracts as a new component of functional food. Czech J. Food Sci., 2016; 34: 554–563.
24. Peat S, Whelan WJ, Edwards TE. Polysaccharides of baker’s yeast. Part IV. Mannan. Journal of the Chemical Society (Resumed). 1961; 29–34.
25. Ogawa K, Nishikori J, Ino T, Matsuda K. Chemical Structures of Oligosaccharides Obtained from Partial Acid Hydrolysates of Saccharomyces cerevisiae Mannan. Biosci. Biotech. Biochem., 1994; 58 (3): 560–562.
26. Anderson RA. Water absorption and solubility and amylograph characteristics of roll-cooked small grain products. Cereal Chern. 1981; 59(4): 265–269.
27. Laflamme DP. Development and validation of body condition score system for dogs. Canine Practices. 1997; 22: 10–15.
28. NRC—National Research Council. Nutrient requirements of dogs and cats. Washington, DC: National Academy Press, 2006.
29. FEDIAF—Fédération Européenne de L’industrie des Aliments pour Animaux Familiers. The European Pet Food Industry Federation. Nutritional Guidelines. 2017.
30. Loureiro BA, Sakomura NK, Vasconcellos RS, Sembenelli G, Gomes MOS. Insoluble fibres, satiety and food intake in cats fed kibble diets. J. Anim. Physiol. Anim. Nutr. (In press.) 2017; 101(5): 824–834. doi: 10.1111/jpn.12468 27080580
31. Carciofi AC, Takakura FS, De-Oliveira LD, Teshima E, Jeremias JT, Brunetto MA, et al. Effects of six carbohydrate sources on dog diet digestibility and postprandial glucose and insulin response. Journal of Animal Physiology and Animal Nutrition. 2008; 98: 326–336.
32. Erwin ES, Marco GJ, Emery EM. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science. 1961; 44: 1768–1771.
33. Pryce JD. A modification of the Barker-Summerson method for the determination of latic acid. The Analist. 1969; 94: 1121–1151.
34. Vale SR, Gloria MB. Determination of biogenic amines in cheese. J. AOAC Int. 1997; 80(5): 1006–1012. 9325578
35. Peters IR, Calvert EL, Hall EJ, Day MJ. Measurement of immunoglobulin concentrations in the feces of healthy dogs. Clin. Diagn. Lab. Immunol. 2004; 11(5): 841–848. doi: 10.1128/CDLI.11.5.841-848.2004 15358641
36. Neaga A, Lefor J, Lich KE, Liparoto SF, Xiao YQ. Development and validation of a flow cytometric method to evaluate phagocytosis of pHrodo™ BioParticles® by granulocytes in multiple species. Journal of Immunological Methods. 2013; 390(1–2): 9–17. doi: 10.1016/j.jim.2011.06.027 21767540
37. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. Journal of Immunological Methods. 1980; 38: 161–170. doi: 10.1016/0022-1759(80)90340-3 6778929
38. Pick E, Mizel D. Rapid microassays for measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. Journal of Immunological Methods. 1981; 46: 211–226. doi: 10.1016/0022-1759(81)90138-1 6273471
39. Grenn LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry. 1982; 126: 131–138. doi: 10.1016/0003-2697(82)90118-x 7181105
40. Middelbos IS, Fastinger ND, Fahey GC Jr. Evaluation of fermentable oligosaccharides in diets fed to dogs in comparison to fiber standards. J. Anim. Sci. 2007; 85: 3033–3044. doi: 10.2527/jas.2007-0080 17686893
41. Gomes MOS, Beraldo MC, Putarov TC, Brunetto MA, Zaine L, Gloria MBA, et al. Old beagle dogs have lower faecal concentrations of some fermentation products and lower peripheral lymphocyte counts than young adult beagles. British Journal of Nutrition. 2011; 106: S187–S190. doi: 10.1017/S0007114511002960 22005424
42. Lin CY, Alexander C, Steelman AJ, Warzecha CM, Godoy MRC, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs. Journal of Animal Science. 2019. https://doi.org/10.1093/jas/skz064.
43. Diez M, Hornick JL, Baldwin P, Eenaeme CV, Istasse L. The influence of sugar-beet fiber, guar gum and inulin on nutrient digestibility, water consumption and plasma metabolites in healthy Beagle dogs. Res. Vet. Sci. 1998; 64: 91–96. doi: 10.1016/s0034-5288(98)90001-7 9625462
44. de-Oliveira LD, Takakura FS, Kienzle E, Brunetto MA, Teshima E, Pereira GT, et al. Fibre analysis and fibre digestibility in pet foods–a comparison of total dietary fibre, neutral and acid detergent fibre and crude fibre. Animal Physiology and Animal Nutrition. 2012; 96: 895–906. https://doi.org/10.1111/j.1439-0396.2011.01203.x
45. Monti M, Gibson M, Loureiro BA, Sá FC, Putarov TC, Villaverde C, et al. Influence of dietary fiber on macrostructure and processing traits of extruded dog foods. Anim. Feed Sci. Technol. 2016, 220: 93–102. doi: 10.1016/j.anifeedsci.2016.07.009
46. Teng P-Y, Kim WK. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018; 5: 245. doi: 10.3389/fvets.2018.00245 30425993
47. Santos JPF, Aquino AAA, Glória MBA, Avila-CampoS MJ, Oba PM, Santos KM, et al. Effects of dietary yeast cell wall on faecal bacteria and fermentation products in adult cats. J Anim Physiol Anim Nutr. 2018; 102(4): 1–11. doi: 10.1111/jpn.12918 29761557
48. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front. Microbiol. 2016; 7: 979. doi: 10.3389/fmicb.2016.00979 27446020
49. Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer A, et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiology Ecology. 2017; 93(11): 1–9. https://doi.org/10.1093/femsec/fix127.
50. Inan MS, Rasoulpour RJ, Yin L, Hubbard K, Rosenberg DW, Giardina C. The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology, 2000; 118(4): 724–734. doi: 10.1016/s0016-5085(00)70142-9 10734024
51. Yin L, Laevsky G, Giardina C. Butyrate Suppression of Colonocyte NF-κB Activation and Cellular Proteasome Activity. Journal of Biological Chemistry. 2001; 276(48): 44641–44646. doi: 10.1074/jbc.M105170200 11572859
52. Jiminez JA, Uwiera TC, Abbott DW, Uwiera RRE, Inglis GD. Butyrate Supplementation at High Concentrations Alters Enteric Bacterial Communities and Reduces Intestinal Inflammation in Mice Infected with Citrobacter rodentium. mSphere. 2017. 2(4): 1–21. https://doi.org/10.1128/mSphere.00243-17.
53. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014. Chapter Three–the role of short-chain fatty acids in health and disease. Adv. Immunol. 121: 91–119. doi: 10.1016/B978-0-12-800100-4.00003-9 24388214
54. Ríos-Covían D, Ruas-Madiedo P, Margolles A, Gueimonde M, Reyes-Gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016; 7: 185. doi: 10.3389/fmicb.2016.00185 26925050
55. Fischer MM, Kessler AM, de Sá LR, Vasconcellos RS, Filho FO, Nogueira SP, et al. Fiber fermentability effects on energy and macronutrient digestibility, fecal traits, postprandial metabolite responses, and colon histology of overweight cats. J. Anim. Sci. 2012; 90(7): 2233–45. doi: 10.2527/jas.2011-4334 Epub 2012 Jan 13. 22247109
56. Moens F, Abbeele PV, Basit AW, Dodo C, Chatterjee R, Smith B, et al. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. International Journal of Pharmaceutics. 2019. 555: 1–10. doi: 10.1016/j.ijpharm.2018.11.020 30445175
57. Hussein HS; Flickinger EA; Fahey GC Jr. Petfood Applications of Inulin and Oligofructose. Journal of Nutrition. 1999; 129:1454–1456.
58. Flickinger EA, Schreijen EMWC, Patil AR, Houssein HS, Grieshop CM, Merchen NR, et al. Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. Journal of Animal Science. 2003; 80: 2008–2018.
59. Propst EL, Flickinger EA, Bauer LL, Merchen NR, Fahey C Jr. A dose-response experiment evaluating the effects of oligofructose and inulin on nutrient digestibility, stool quality, and fecal protein catabolites in healthy adult dogs. J. Anim. Sci. 2003; 81: 3057–3066. doi: 10.2527/2003.81123057x 14677862
60. Hanfrey CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM, et al. Alternative spermidine biosynthetic route is critical for growth of Campylobac- ter jejuni and is the dominant polyamine pathway in human gut microbiota, J. Biol. Chem. 2011; 286: 43301–43312. doi: 10.1074/jbc.M111.307835 22025614
61. Kalac P. Health effects and occurrence of dietary polyamines: A review for the period 2005–mid 2013. Food Chemistry. 2014; 161: 27–39. doi: 10.1016/j.foodchem.2014.03.102 24837918
62. Wang JY, Johnson LR. Luminal polyamines stimulate repair of gastric mucosal stress ulcers. Gastrointestinal and Liver Physiology. 1990; 259(4): G584–G592. https://doi.org/10.1152/ajpgi.1990.259.4.G584
63. Loser C, Eisel A, Harms D, Folsch UR. Dietary polyamines are essential luminal growth factors for small intestinal and colonic mucosal growth and development. Gut. 1999; 44:12–16. doi: 10.1136/gut.44.1.12 9862820
64. Milovic V, Turchanowa L. Polyamines and colon cancer. Biochem. Soc. Trans. 2003; 31: 381–383. doi: 10.1042/bst0310381 12653643
65. Hoyles L, Swann J. Influence of the Human Gut Microbiome on the Metabolic Phenotype. The Handbook of Metabolic Phenotyping. Elsevier Inc.; 2019.
66. Norris CR, Gershwin LJ. Evaluation of systemic and secretory IgA concentrations and immunohistochemical stains for IgA-containing B cells in mucosal tissues of an Irish setter with selective IgA deficiency. J Am Anim Hosp Assoc. 2003; 39: 247–250. doi: 10.5326/0390247 12755197
67. Lycke N, Erlandsson L, Ekman L, Schon K, Leandreson T. Lack of J chain inhibits the transport of gut IgA and abrogates the development of intestinal antitoxic protection. J Immunol. 1999; 163: 913–919. 10395687
68. Wijburg OLC, Uren TK, Simpfendorfer K, Johansen F-E, Brandtzaeg P, Stugnell RA. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J Exp Med. 2006; 203: 21–26. doi: 10.1084/jem.20052093 16390940
69. Zaine L, Ferreira C, Gomes MOS, Monti M, Tortola L, Vasconcellos RS, et al. Faecal IgA concentration is influenced by age in dogs. British Journal of Nutrition. 2011; 106: S183–S186. doi: 10.1017/S0007114511000559 22005423
70. Mayer L. Mucosal immunity and gastrointestinal antigen processing. J. Pediatr. Gastroenterol. Nutr. 2000; 30: S4–S12. doi: 10.1097/00005176-200001001-00002 10634293
71. Woof JM, Kerr MA. The function of immunoglobulin A in immunity. Journal of Pathology. 2006; 208: 270–282. doi: 10.1002/path.1877 16362985
72. Heinrichs AJ, Heinrichs BS, Jones CM. Fecal and saliva IgA secretion when feeding a concentrated mannan oligosaccharide to neonatal dairy calves. The Professional Animal Scientist. 2013; 29: 457–462.
73. Peixoto MC, Ribeira EM, Maria APJ, Loureiro BA, di Santo LG, Putarov TC, et al. Effect of resistant starch on the intestinal health of old dogs: fermentation products and histological features of the intestinal mucosa. J Anim Physiol Anim Nutr. 2018; 102: 111–121.
74. Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr. Opin. Gastroenterol. 2015; 31: 153–158. doi: 10.1097/MOG.0000000000000151 25594887
75. Posadas SJ, Caz V, Caballero I, Cendejas E, Quilez I, Largo C, et al. Effects of mannoprotein E1 in liquid diet on inflammatory response and TLR5 expression in the gut of rats infected by Salmonella typhimurium. BMC Gastroenterology. 2010; 10: 58. doi: 10.1186/1471-230X-10-58 20529359
76. Song SK, Beck BR, Kim D, Park J, Jungjoon K, Kim HD, et al. Prebiotics as immunostimulants in aquaculture: A review. Fish & Shellfish Immunology. 2014; 40: 40–48.
77. Oliveira CAF, Vetvicka V, Zanuzzo FS. β-Glucan successfully stimulated the immune system in different jawed vertebrate species. Comparative Immunology, Microbiology and Infectious Diseases. 2019; 62: 1–6. doi: 10.1016/j.cimid.2018.11.006 30711038
78. Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. Journal of Leukocyte Biology. 2011; 89: 685–695. doi: 10.1189/jlb.1109753 21233408
79. Esteban MA, Rodriguez A, Mesguer J. Glucan receptor but not mannose receptor is involved in the phagocytosis of Saccharomyces cerevisiae by seabream (Sparus auratus L.) blood leucocytes. Fish Shellfish Immunol 2004; 16: 447–51. doi: 10.1016/j.fsi.2003.07.004 15123311
80. Abu-Elala N, Mohamed M, Mohamed M. Use of different Saccharomyces cerevisiae biotic forms as immune-modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. International Journal of Veterinary Science and Medicine. 2013; 1: 21–29. https://doi.org/10.1016/j.ijvsm.2013.05.001
81. Vetvicka V, Vashishta A, Saraswat-ohri S, Vetvickova J. Immunological effects of yeast- and mushroom-derived beta-glucans. Journal of medicinal food. 2008; 11(4): 615–622. doi: 10.1089/jmf.2007.0588 19053851
82. Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J. Effects of inactivated Enterococcus faecalis and mannan oligosaccharide and their combination on growth, immunity, and disease protection in rainbow trout. N. Am. J. Aquacult. 2013; 75: 416–428. doi: 10.1080/15222055.2013.799620
83. Torrecillas S, Makol A, Caballero M, Montero D, Ginés R, Sweetman J, et al. Improved feed utilization, intestinal mucus production and immune parameters in sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Aquaculture Nutrition. 2011; 17: 223–233. doi: 10.1111/j.1365-2095.2009.00730.x
84. Devi G, Harikrishnan R, Paray BA, Al-Sadoon MK, Hoseinifar SH, Balasundaram C. Comparative immunostimulatory effect of probiotics and prebiotics in Channa punctatus against Aphanomyces invadans. Fish & Shellfish Immunology. 2019; 86: 965–973, https://doi.org/10.1016/j.fsi.2018.12.051.
85. Schmitz S, Henrich M, Neiger R, Werling D, Allenspach K. Comparison of TNFα responses induced by Toll-like receptor ligands and probiotic Enterococcus faecium in whole blood and peripheral blood mononuclear cells of healthy dogs. Veterinary Immunology and Immunopathology. 2013; 153: 170–174. doi: 10.1016/j.vetimm.2013.02.014 23507437
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy