Conventional rotator cuff versus all-suture anchors—A biomechanical study focusing on the insertion angle in an unlimited cyclic model
Autoři:
Dimitris Ntalos aff001; Kay Sellenschloh aff002; Gerd Huber aff002; Daniel Briem aff003; Klaus Püschel aff004; Michael M. Morlock aff002; Karl-Heinz Frosch aff001; Florian Fensky aff001; Till Orla Klatte aff001
Působiště autorů:
Department of Trauma-, Hand-, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
aff001; Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
aff002; Asklepios Westklinikum Hamburg, Hamburg, Germany
aff003; Institute of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
aff004
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225648
Souhrn
Purpose
The purpose of this study was to compare the biomechanical properties of an all-suture anchor to a conventional anchor used commonly in rotator cuff repairs. Furthermore, the biomechanical influence of various implantation angles was evaluated in both anchor types in a human cadaveric model.
Methods
30 humeri were allocated into three groups with a similar bone density. The two different anchor types were inserted at a predefined angle of 45°, 90° or 110°. Biomechanical testing included an initial preload of 20N followed by a cyclic protocol with a stepwise increasing force of 0,05N for each cycle at a rate of 1Hz until system failure. Number of cycles, maximum load to failure, stiffness, displacement and failure mode were determined.
Results
27 anchors failed by pullout. There was no significant difference between the conventional and the all-suture anchor regarding mean pullout strength. No considerable discrepancy in stiffness or displacement could be perceived. Comparing the three implantation angles no significant difference could be observed for the all-suture or the conventional anchor.
Conclusion
All-suture anchors show similar biomechanical properties to conventional screw shaped anchors in an unlimited cyclic model. The exact insertion angle is not a significant predictor of failure.
Klíčová slova:
Bone and mineral metabolism – Germany – Medical implants – MTS assay – Specimen preparation and treatment – Stiffness
Zdroje
1. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86–A: 219–224.
2. Cho NS, Rhee YG. The factors affecting the clinical outcome and integrity of arthroscopically repaired rotator cuff tears of the shoulder. Clin Orthop Surg. 2009;1: 96–104. doi: 10.4055/cios.2009.1.2.96 19885061
3. Clevenger TA, Beebe MJ, Strauss EJ, Kubiak EN. The effect of insertion angle on the pullout strength of threaded suture anchors: a validation of the deadman theory. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2014;30: 900–905. doi: 10.1016/j.arthro.2014.03.021 24880193
4. Benson EC, MacDermid JC, Drosdowech DS, Athwal GS. The incidence of early metallic suture anchor pullout after arthroscopic rotator cuff repair. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2010;26: 310–315. doi: 10.1016/j.arthro.2009.08.015 20206039
5. Strauss E, Frank D, Kubiak E, Kummer F, Rokito A. The effect of the angle of suture anchor insertion on fixation failure at the tendon-suture interface after rotator cuff repair: deadman’s angle revisited. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2009;25: 597–602. doi: 10.1016/j.arthro.2008.12.021 19501288
6. Barber FA, Cawley P, Prudich JF. Suture anchor failure strength—an in vivo study. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 1993;9: 647–652.
7. Nagra NS, Zargar N, Smith RDJ, Carr AJ. Mechanical properties of all-suture anchors for rotator cuff repair. Bone Jt Res. 2017;6: 82–89. doi: 10.1302/2046-3758.62.BJR-2016-0225.R1 28167489
8. Barber FA, Herbert MA. All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode. Arthrosc J Arthrosc Relat Surg. 2017;33: 1113–1121. doi: 10.1016/j.arthro.2016.09.031 28017468
9. Barber FA, Herbert MA. Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2013;29: 832–844. doi: 10.1016/j.arthro.2013.01.028 23561482
10. Nho SJ, Provencher MT, Seroyer ST, Romeo AA. Bioabsorbable anchors in glenohumeral shoulder surgery. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2009;25: 788–793. doi: 10.1016/j.arthro.2008.08.018 19560644
11. Galland A, Airaudi S, Gravier R, Le Cann S, Chabrand P, Argenson J-N. Pullout strength of all suture anchors in the repair of rotator cuff tears: a biomechanical study. Int Orthop. 2013;37: 2017–2023. doi: 10.1007/s00264-013-1984-4 23835556
12. Goschka AM, Hafer JS, Reynolds KA, Aberle NS, Baldini TH, Hawkins MJ, et al. Biomechanical comparison of traditional anchors to all-suture anchors in a double-row rotator cuff repair cadaver model. Clin Biomech. 2015;30: 808–813. doi: 10.1016/j.clinbiomech.2015.06.009 26117162
13. Dwyer T, Willett TL, Dold AP, Petrera M, Wasserstein D, Whelan DB, et al. Maximum load to failure and tensile displacement of an all-suture glenoid anchor compared with a screw-in glenoid anchor. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2016;24: 357–364. doi: 10.1007/s00167-013-2760-0 24201901
14. Mazzocca AD, Chowaniec D, Cote MP, Fierra J, Apostolakos J, Nowak M, et al. Biomechanical evaluation of classic solid and novel all-soft suture anchors for glenoid labral repair. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2012;28: 642–648. doi: 10.1016/j.arthro.2011.10.024 22301360
15. Burkhart SS. Reprint of: The deadman theory of suture anchors: observations along a south Texas fence line. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2014;30: 895–899. doi: 10.1016/j.arthro.2014.06.001 25088429
16. Burkhart SS. The Deadman Theory Is Alive and Well. Arthrosc J Arthrosc Relat Surg. 2014;30: 1049–1050. doi: 10.1016/j.arthro.2014.07.007 25193118
17. Burkhart SS. Can the Deadman Be Killed? Arthrosc J Arthrosc Relat Surg. 2015;31: 181–182. doi: 10.1016/j.arthro.2014.12.007 25619700
18. Burkhart SS. Suture Anchor Insertion Angle and the Deadman Theory. Arthrosc J Arthrosc Relat Surg. 2009;25: 1365. doi: 10.1016/j.arthro.2009.10.006 19962059
19. Green RN, Donaldson OW, Dafydd M, Evans SL, Kulkarni R. Biomechanical Study: Determining the Optimum Insertion Angle for Screw-In Suture Anchors—Is Deadman’s Angle Correct? Arthrosc J Arthrosc Relat Surg. 2014;30: 1535–1539. doi: 10.1016/j.arthro.2014.07.010 25218007
20. Weiser L, Dreimann M, Huber G, Sellenschloh K, Püschel K, Morlock MM, et al. Cement augmentation versus extended dorsal instrumentation in the treatment of osteoporotic vertebral fractures: a biomechanical comparison. Bone Jt J. 2016;98–B: 1099–1105. doi: 10.1302/0301-620X.98B8.37413 27482024
21. Püschel K. Lehre und Forschung an Verstorbenen. Rechtsmedizin. 2016;26. doi: 10.1007/s00194-016-0087-0
22. Barber FA, Herbert MA, Hapa O, Rapley JH, Barber CAK, Bynum JA, et al. Biomechanical analysis of pullout strengths of rotator cuff and glenoid anchors: 2011 update. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2011;27: 895–905. doi: 10.1016/j.arthro.2011.02.016 21693345
23. Bynum CK, Lee S, Mahar A, Tasto J, Pedowitz R. Failure Mode of Suture Anchors as a Function of Insertion Depth. Am J Sports Med. 2005;33: 1030–1034. doi: 10.1177/0363546504271746 15888723
24. Visscher LE, Jeffery C, Gilmour T, Anderson L, Couzens G. The history of suture anchors in orthopaedic surgery. Clin Biomech. 2019;61: 70–78. doi: 10.1016/j.clinbiomech.2018.11.008 30502638
25. Hyatt AE, Lavery K, Mino C, Dhawan A. Suture Anchor Biomechanics After Rotator Cuff Footprint Decortication. Arthroscopy. 2016;32: 544–550. doi: 10.1016/j.arthro.2015.08.034 26524936
26. Rossouw DJ, McElroy BJ, Amis AA, Emery RJ. A biomechanical evaluation of suture anchors in repair of the rotator cuff. J Bone Joint Surg Br. 1997;79: 458–461. doi: 10.1302/0301-620x.79b3.6983 9180329
27. Pfeiffer FM, Smith MJ, Cook JL, Kuroki K. The histologic and biomechanical response of two commercially available small glenoid anchors for use in labral repairs. J Shoulder Elbow Surg. 2014;23: 1156–1161. doi: 10.1016/j.jse.2013.12.036 24725901
28. Jost PW, Khair MM, Chen DX, Wright TM, Kelly AM, Rodeo SA. Suture Number Determines Strength of Rotator Cuff Repair. JBJS. 2012;94: e100. doi: 10.2106/JBJS.K.00117 22810407
29. Burkhart SS, Diaz Pagàn JL, Wirth MA, Athanasiou KA. Cyclic loading of anchor-based rotator cuff repairs: confirmation of the tension overload phenomenon and comparison of suture anchor fixation with transosseous fixation. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 1997;13: 720–724.
30. Mazzocca AD, Millett PJ, Guanche CA, Santangelo SA, Arciero RA. Arthroscopic single-row versus double-row suture anchor rotator cuff repair. Am J Sports Med. 2005;33: 1861–1868. doi: 10.1177/0363546505279575 16210578
31. Schneeberger AG, von Roll A, Kalberer F, Jacob HAC, Gerber C. Mechanical strength of arthroscopic rotator cuff repair techniques: an in vitro study. J Bone Joint Surg Am. 2002;84–A: 2152–2160.
32. Brand JC. Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc. 2017;33: 1122–1123. doi: 10.1016/j.arthro.2017.01.012 28578762
33. Liporace FA, Bono CM, Caruso SA, Weiner B, Penny K, Feldman AJ, et al. The mechanical effects of suture anchor insertion angle for rotator cuff repair. Orthopedics. 2002;25: 399–402. 12002210
34. Rossi MJ, Brand JC, Provencher MT, Lubowitz JH. A Cavalcade of Shoulder Controversies: Deadman Angle Revisited… Divergent Anchor Angles and Depths, and Rotator Cuff Vectors Confuse Comparison… and More. Arthrosc J Arthrosc Relat Surg. 2014;30: 1529–1532. doi: 10.1016/j.arthro.2014.10.002 25464868
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy