#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells


Autoři: Fabio Stossi aff001;  Radhika D. Dandekar aff002;  Hannah Johnson aff002;  Philip Lavere aff001;  Charles E. Foulds aff001;  Maureen G. Mancini aff001;  Michael A. Mancini aff001
Působiště autorů: Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America aff001;  Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, United States of America aff002;  GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States of America aff003;  Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States of America aff004;  Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States of America aff005;  Dan L. Duncan Comprehensive Cancer Center; Baylor College of Medicine, Houston, TX, United States of America aff006;  Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States of America aff007
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224405

Souhrn

A subset of environmental chemicals acts as “obesogens” as they increase adipose mass and lipid content in livers of treated rodents. One of the most studied class of obesogens are the tin-containing chemicals that have as a central moiety tributyltin (TBT), which bind and activate two nuclear hormone receptors, Peroxisome Proliferator Activated Receptor Gamma (PPARG) and Retinoid X Receptor Alpha (RXRA), at nanomolar concentrations. Here, we have tested whether TBT chloride at such concentrations may affect the neutral lipid level in two cell line models of human liver. Indeed, using high content image analysis (HCA), TBT significantly increased neutral lipid content in a time- and concentration-dependent manner. Consistent with the observed increased lipid accumulation, RNA fluorescence in situ hybridization (RNA FISH) and RT-qPCR experiments revealed that TBT enhanced the steady-state mRNA levels of two key genes for de novo lipogenesis, the transcription factor SREBF1 and its downstream enzymatic target, FASN. Importantly, pre-treatment of cells with 2-deoxy-D-glucose reduced TBT-mediated lipid accumulation, thereby suggesting a role for active glycolysis during the process of lipid accumulation. As other RXRA binding ligands can promote RXRA protein turnover via the 26S proteasome, TBT was tested for such an effect in the two liver cell lines. We found that TBT, in a time- and dose-dependent manner, significantly reduced steady-state RXRA levels in a proteasome-dependent manner. While TBT promotes both RXRA protein turnover and lipid accumulation, we found no correlation between these two events at the single cell level, thereby suggesting an additional mechanism may be involved in TBT promotion of lipid accumulation, such as glycolysis.

Klíčová slova:

Chlorides – Image analysis – Immunofluorescence – Lipid analysis – Lipids – Obesity – RNA hybridization – Lipogenesis


Zdroje

1. Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51: 56–70. doi: 10.1016/j.etap.2017.02.024 28292651

2. Richard AM, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chem Res Toxicol. 2016;29: 1225–51. doi: 10.1021/acs.chemrestox.6b00135 27367298

3. Heindel JJ, Blumberg B. Environmental Obesogens: Mechanisms and Controversies. Annu Rev Pharmacol Toxicol. 2019;59: 89–106. doi: 10.1146/annurev-pharmtox-010818-021304 30044726

4. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68: 3–33. doi: 10.1016/j.reprotox.2016.10.001 27760374

5. Foulds CE, Treviño LS, York B, Walker CL. Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol. 2017;13: 445–457. doi: 10.1038/nrendo.2017.42 28524171

6. Lee MK, Blumberg B. Mini Review: Transgenerational effects of Obesogens. Basic Clin Pharmacol Toxicol. 2019; doi: 10.1111/bcpt.13214

7. Janesick AS, Dimastrogiovanni G, Vanek L, Boulos C, Chamorro-García R, Tang W, et al. On the Utility of ToxCastTM and ToxPi as Methods for Identifying New Obesogens. Environ Health Perspect. 2016;124: 1214–1226. doi: 10.1289/ehp.1510352 26757984

8. de Araújo JFP, Podratz PL, Merlo E, Sarmento IV, da Costa CS, Niño OMS, et al. Organotin Exposure and Vertebrate Reproduction: A Review. Front Endocrinol (Lausanne). 2018;9: 64. doi: 10.3389/fendo.2018.00064 29545775

9. Marques VB, Faria RA, Dos Santos L. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front Endocrinol (Lausanne). 2018;9: 101. doi: 10.3389/fendo.2018.00101 29615977

10. Kannan K, Senthilkumar K, Giesy JP. Occurrence of Butyltin Compounds in Human Blood. Environ Sci Technol. American Chemical Society; 1999;33: 1776–1779. doi: 10.1021/es990011w

11. Antizar-Ladislao B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. a review. b_antizar@hotmail.com. Environ Int. 2008;34: 292–308. doi: 10.1016/j.envint.2007.09.005 17959247

12. Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, et al. Endocrine-Disrupting Organotin Compounds Are Potent Inducers of Adipogenesis in Vertebrates. Mol Endocrinol. 2006;20: 2141–2155. doi: 10.1210/me.2005-0367 16613991

13. Yanik SC, Baker AH, Mann KK, Schlezinger JJ. Organotins are potent activators of PPARγ and adipocyte differentiation in bone marrow multipotent mesenchymal stromal cells. Toxicol Sci. 2011;122: 476–88. doi: 10.1093/toxsci/kfr140 21622945

14. Li X, Ycaza J, Blumberg B. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. J Steroid Biochem Mol Biol. 2011;127: 9–15. doi: 10.1016/j.jsbmb.2011.03.012 21397693

15. Baker AH, Watt J, Huang CK, Gerstenfeld LC, Schlezinger JJ. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chem Res Toxicol. 2015;28: 1156–1166. doi: 10.1021/tx500433r 25932594

16. Chamorro-García R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B. Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice. Environ Health Perspect. 2013;121: 359–366. doi: 10.1289/ehp.1205701 23322813

17. Zuo Z, Chen S, Wu T, Zhang J, Su Y, Chen Y, et al. Tributyltin causes obesity and hepatic steatosis in male mice. Environ Toxicol. 2011;26: 79–85. doi: 10.1002/tox.20531 19760618

18. Bertuloso BD, Podratz PL, Merlo E, de Araújo JFP, Lima LCF, de Miguel EC, et al. Tributyltin chloride leads to adiposity and impairs metabolic functions in the rat liver and pancreas. Toxicol Lett. 2015;235: 45–59. doi: 10.1016/j.toxlet.2015.03.009 25819109

19. Hartig SM, He B, Long W, Buehrer BM, Mancini MA. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. J Cell Biol. 2011;192: 55–67. doi: 10.1083/jcb.201004026 21220509

20. Stossi F, Dandekar RD, Bolt MJ, Newberg JY, Mancini MAMG, Kaushik AK, et al. High throughput microscopy identifies bisphenol AP, a bisphenol A analog, as a novel AR down-regulator. Oncotarget. 2016;7: 16962–74. doi: 10.18632/oncotarget.7655 26918604

21. Orjalo A V., Johansson HE. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells. Methods in molecular biology (Clifton, NJ). 2016. pp. 119–134. doi: 10.1007/978-1-4939-3378-5_10

22. Bombrun M, Gao H, Ranefall P, Mejhert N, Arner P, Wählby C. Quantitative high-content/high-throughput microscopy analysis of lipid droplets in subject-specific adipogenesis models. Cytom Part A. 2017;91: 1068–1077. doi: 10.1002/cyto.a.23265 29031005

23. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M ZB. Orange: Data Mining Toolbox in Python. J Mach Learn Res. 2013;14: 2349–2353.

24. Foulds CE, Tsimelzon A, Long W, Le A, Tsai SY, Tsai M-J, et al. Research resource: expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Mol Endocrinol. 2010;24: 1090–105. doi: 10.1210/me.2009-0427 20219889

25. Hart SN, Li Y, Nakamoto K, Subileau E a., Steen D, Zhong X b. A Comparison of Whole Genome Gene Expression Profiles of HepaRG Cells and HepG2 Cells to Primary Human Hepatocytes and Human Liver Tissues. Drug Metab Dispos. 2010;38: 988–994. doi: 10.1124/dmd.109.031831 20228232

26. Uray IP, Rodenberg JM, Bissonnette RP, Brown PH, Mancini MA. Cancer-Preventive Rexinoid Modulates Neutral Lipid Contents of Mammary Epithelial Cells through a Peroxisome Proliferator-Activated Receptor -Dependent Mechanism. Mol Pharmacol. 2012;81: 228–238. doi: 10.1124/mol.111.072967 22053058

27. Grondin M, Marion M, Denizeau F, Averill-Bates DA. Tributyltin induces apoptotic signaling in hepatocytes through pathways involving the endoplasmic reticulum and mitochondria. Toxicol Appl Pharmacol. 2007;222: 57–68. doi: 10.1016/j.taap.2007.03.028 17512566

28. Zhou M, Feng M, Fu L, Ji L, Zhao J, Xu J. Toxicogenomic analysis identifies the apoptotic pathway as the main cause of hepatotoxicity induced by tributyltin. Food Chem Toxicol. 2016;97: 316–326. doi: 10.1016/j.fct.2016.09.027 27678064

29. Li J, Cheng J-X. Direct Visualization of De novo Lipogenesis in Single Living Cells. Sci Rep. 2015;4: 6807. doi: 10.1038/srep06807 25351207

30. Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, et al. Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology. 2017;158: 3109–3125. doi: 10.1210/en.2017-00348 28977589

31. Shoucri BM, Hung VT, Chamorro-García R, Shioda T, Blumberg B. Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte. Endocrinology. 2018;159: 2863–2883. doi: 10.1210/en.2018-00056 29860300

32. Hiebl V, Ladurner A, Latkolik S, Dirsch VM. Natural products as modulators of the nuclear receptors and metabolic sensors LXR, FXR and RXR. Biotechnol Adv. 2018;36: 1657–1698. doi: 10.1016/j.biotechadv.2018.03.003 29548878

33. Brtko J, Dvorak Z. Triorganotin compounds—ligands for "rexinoid" inducible transcription factors: biological effects. Toxicol Lett. 2015;234: 50–8. doi: 10.1016/j.toxlet.2015.02.009 25683035

34. Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta. 2016;1859: 1083–1099. doi: 10.1016/j.bbagrm.2016.03.002 26962021

35. le Maire A, Grimaldi M, Roecklin D, Dagnino S, Vivat-Hannah V, Balaguer P, et al. Activation of RXR–PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep. 2009;10: 367–373. doi: 10.1038/embor.2009.8 19270714

36. Osburn DL, Shao G, Seidel HM, Schulman IG. Ligand-dependent degradation of retinoid X receptors does not require transcriptional activity or coactivator interactions. Mol Cell Biol. 2001;21: 4909–18. doi: 10.1128/MCB.21.15.4909-4918.2001 11438648

37. Grandjean P, Barouki R, Bellinger DC, Casteleyn L, Chadwick LH, Cordier S, et al. Life-Long Implications of Developmental Exposure to Environmental Stressors: New Perspectives. Endocrinology. 2015;156: 3408–15. doi: 10.1210/EN.2015-1350 26241067

38. Muscogiuri G, Barrea L, Laudisio D, Savastano S, Colao A. Obesogenic endocrine disruptors and obesity: myths and truths. Arch Toxicol. 2017;91: 3469–3475. doi: 10.1007/s00204-017-2071-1 28975368

39. Janesick A, Blumberg B. Minireview: PPARγ as the target of obesogens. J Steroid Biochem Mol Biol. 2011;127: 4–8. doi: 10.1016/j.jsbmb.2011.01.005 21251979

40. Kirchner S, Kieu T, Chow C, Casey S, Blumberg B. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes. Mol Endocrinol. 2010;24: 526–539. doi: 10.1210/me.2009-0261 20160124

41. Nielsen JB, Strand J. Butyltin Compounds in Human Liver. Environ Res. 2002;88: 129–133. doi: 10.1006/enrs.2001.4321 11908938

42. Takahashi S, Mukai H, Tanabe S, Sakayama K, Miyazaki T, Masuno H. Butyltin residues in livers of humans and wild terrestrial mammals and in plastic products. Environ Pollut. 1999;106: 213–8. doi: 10.1016/s0269-7491(99)00068-8 15093048

43. Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, et al. Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: a cohort study. Environ Heal. 2014;13: 45. doi: 10.1186/1476-069X-13-45 24899383

44. Hunakova L, Macejova D, Toporova L, Brtko J. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF-7 and MDA-MB-231. Tumor Biol. 2016;37: 6701–6708. doi: 10.1007/s13277-015-4524-6 26662104


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#