Hamsters in the city: A study on the behaviour of a population of common hamsters (Cricetus cricetus) in urban environment
Autoři:
Anna Flamand aff001; Nancy Rebout aff002; Camille Bordes aff003; Lauréline Guinnefollau aff004; Matthieu Bergès aff005; Fanny Ajak aff004; Carina Siutz aff006; Eva Millesi aff006; Christiane Weber aff007; Odile Petit aff002
Působiště autorů:
Laboratoire Image Ville Environnement, UMR 7362, Faculté de Géographie et de l’aménagement, Strasbourg, France
aff001; Cognitive and Social Ethology Group, UMR Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRA, Université de Tours, Nouzilly, France
aff002; Ecole Nationale Supérieure Agronomique de Toulouse, Castanet-Tolosan Cedex, France
aff003; IPHC- DEPE, UMR 7178, Université de Strasbourg-CNRS, Strasbourg Cedex 2, France
aff004; Université de Tours, Tours Cedex 1, France
aff005; Department of Behavioural Biology, University of Vienna, Althanstrasse, Vienna, Austria
aff006; TETIS CNRS, Université de Montpellier, Montpellier, France
aff007
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225347
Souhrn
Animals in urban environments face challenging situations and have to cope with human activities. This study investigated the ecology and behaviour of a population of European hamsters (Cricetus cricetus) living in the city centre of Vienna (Austria). We recorded the surface activities of 35 hamsters in May 2015. Each focal animal was observed for 15 minutes, and a total of 66 focal samples were analysable. As a prey species in an environment teeming with human activities, we predicted a high level of vigilance by the hamsters. The results show that while animals dedicated a lot of time to vigilance, most of their time was spent foraging. The study also explores whether the frequency of vigilance behaviours differ between males and females. We found that vigilance behaviours were expressed in a different manner by males and females. Finally, we investigated the distribution of the burrows on green spaces depending on proximity to trees and on noise levels. We found a biased distribution of burrows, with a spatial preference for location protected by the vegetation and distant to noise sources. Although burrows were located preferentially under vegetation cover, levels of noise did not determine their positions. Moreover, this species does not respond to disturbances like daily urban noises, probably due to habituation. The common hamster is an endangered species; our results lead to a greater knowledge of its behaviour in a persistent urban population.
Klíčová slova:
Animal behavior – Behavior – Biological locomotion – Foraging – Hamsters – Predation – Urban areas – Urban environments
Zdroje
1. McKinney M. Urbanization as a major cause of biotic homogenization. Biology Conservation. 2006; 127(3): 247–260. doi: 10.1016/j.biocon.2005.09.005
2. Marzluff J, Ewing K. Restoration of fragmented landscapes for the conservation of birds: A general framework and specific recommendations for urbanizing landscapes. Restoration Ecology. 2001; 9(3): 280–292. doi: 10.1046/j.1526-100x.2001.009003280.x
3. McKinney M. Urbanization, Biodiversity, and Conservation. Bioscience. 2002; 52(10): 883–890. doi: 10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2
4. Luniak M. Synurbization—adaptation of animal wildlife to urban development. In: Shaw WW, Harris LK, Vandruff L, editors. IUWS 2004: Proceedings of the 4th International Urban Wildlife Symposium.; 1999 May 1–5; Tucson, Arizona; Arizona: CALSmart; 2004. p. 50–55.
5. Lowry H, Lill A, Wong B. Behavioural responses of wildlife to urban environments. Biological Reviews. 2013; 88(3): 537–549. doi: 10.1111/brv.12012 23279382
6. Chapman T, Rymer T, Pillay N. Behavioural correlates of urbanisation in the Cape ground squirrel Xerus inauris. Naturwissenschaften. 2012; 99(11): 893–902. doi: 10.1007/s00114-012-0971-8 23052820
7. Ditchkoff S, Saalfeld S, Gibson C. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosystems. 2006; 9(1): 5–12. doi: 10.1007/s11252-006-3262-3
8. Tsunoda M, Kaneko Y, Sako T, Koizumi R, Iwasaki K, Mitsuhashi I, et al. Human disturbance affects latrine-use patterns of raccoon dogs. Journal of Wildlife Management. 2019; 83(3): 728–736. doi: 10.1002/jwmg.21610
9. van der Vinne V, Gorter J, Riede S, Hut R. Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals. Journal of Experimental Biology. 2015; 218(16): 2585–2593. doi: 10.1242/jeb.119354
10. Łopucki R, Mróz I, Berliński Ł, Burzych M. Effects of urbanization on small-mammal communities and the population structure of synurbic species: an example of a medium-sized city. Canadian Journal of Zoology. 2013; 91(8): 554–561. doi: 10.1139/cjz-2012-0168
11. Surov A, Poplavskaya N, Богомолов П, Kropotkina M, Tovpinetz N, Katzman E, et al. Synurbanization of the Common hamster (Cricetus cricetus L., 1758). Russian Journal of Biological Invasions. 2016; 7(1): 69–76. doi: 10.1134/S2075111716010094
12. Franceschini C, Millesi E. Influences on population development in urban living European hamsters (Cricetus cricetus). In: Proceedings of the 11th meeting of the International Hamster Workgroup; 2003; Budapest, Hungary. 2003. p. 12–14.
13. Rusin M, Banaszek A, Mishta A. The common hamster (Cricetus cricetus) in Ukraine: Evidence for population decline. Folia Zoologica -Praha. 2013; 62(3): 207–213. doi: 10.25225/fozo.v62.i3.a6.2013
14. Kaim I, Hędrzak M, Ziewacz Ł. Daily activity pattern of the common hamster (Cricetus cricetus) at two localities situated in urban and rural areas. Zoologica Poloniae. 2014; 58(3–4): 59–69. doi: 10.2478/zoop-2013-0005
15. Čanády A. New site of the European hamster (Cricetus cricetus) in the urban environment of Košice city (Slovakia). Zoology and Ecology. 2013; 23(1): 61–65 doi: 10.1080/21658005.2013.769701
16. Feoktistova N, Surov A, Tovpinetz N, Kropotkina M, Bogomolov P, Siutz C, et al. The common hamster as a synurbist: a history of settlement in european cities. Zoologica Poloniae. 2014; 58(3–4): 116–129. doi: 10.2478/zoop-2013-0009
17. O’Brien J. Saving the common hamster (Cricetus cricetus) from extinction in Alsace (France): Potential flagship conservation or an exercise in futility? Hystrix the Italian Journal of Mammalogy. 2015; 26(2): 89–94. doi: 10.4404/hystrix-26.2–11230
18. Weinhold U. European Action Plan for the conservation of the Common hamster (Cricetus cricetus, L. 1758). 2009. Report No. 158, Affiliated to the Council of Europe, Nature and environment.
19. Ziomek J, Banaszek A. The common hamster, Cricetus cricetus in Poland: Status and current range. Folia Zoologica -Praha. 2007; 56(3): 235–242.
20. Roberge J, Angelstam P. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conservation Biology. 2004; 18(1): 76–85. doi: 10.1111/j.1523-1739.2004.00450.x
21. Rutz C. The establishment of an urban bird population. Journal of Animal Ecology. 2008; 77(5): 1088–1019. doi: 10.1111/j.1365-2656.2008.01420.x
22. Siutz C, Valent M, Ammann V, Niebauer A, Millesi E. Sex-specific effects of food supplementation on hibernation performance and reproductive timing in free-ranging common hamsters. Scientific Reports. 2018; 8(1): 13082. doi: 10.1038/s41598-018-31520-4 30166598
23. Ziomek J, Zgrabczyńska E, Poradzisz A. The behaviour of the common hamster (Cricetus cricetus) under zoo conditions. Der Zoologische Garten. 2009; 78(4): 221–231. doi: 10.1016/j.zoolgart.2009.08.006
24. Hędrzak M, Cywicka D, Kaim I. Comparison of localities of European hamster (Cricetus cricetus) in the areas of high and low level of human activity. Urban Ecosystems. 2018; 21(2): 323–338. doi: 10.1007/s11252-017-0715-9
25. Flamand A. Experimental introduction of common hamster in suburban areas: a worthwhile opportunity for conservation? A French example. Proceeding of the 25th meeting of the International Hamster Workgroup; 2018 October 4–6; Strasbourg, France. 2018. p 61–62.
26. Siutz C, Pluch M, Ruf T, Millesi E. Sex Differences in Foraging Behaviour, Body Fat and Hibernation Patterns of Free-Ranging Common Hamsters. In: Ruf T., Bieber C., Arnold W., Millesi E. (eds) Living in a Seasonal World. Berlin: Springer; 2012. pp 155–165.
27. Siutz C, Millesi E. Effects of birth date and natal dispersal on faecal glucocorticoid concentrations in juvenile Common hamsters. General and Comparative Endocrinology. 2012; 178(2): 323–329. doi: 10.1016/j.ygcen.2012.06.009 22732077
28. Górecki A. Energy flow through the common hamster population. Acta Theriologica (Warsz). 1977; 22(2): 26–66.
29. Barber J, Crooks K, Fristrup K. The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution. 2010; 25(3): 180–189. doi: 10.1016/j.tree.2009.08.002 19762112
30. Siutz C, Franceschini C, Millesi E. Sex and age differences in hibernation patterns of common hamsters: adult females hibernate for shorter periods than males. Journal of Comparative Physiology. B, Biochemical Systemic, and Environmental Physiology. 2016; 186(6): 801–811. doi: 10.1007/s00360-016-0995-z
31. Altmann J. Observational Study of Behavior: Sampling Methods. Behaviour. 1974; 49(3/4): 227–267. doi: 10.1163/156853974X00534
32. Schmelzer E, Millesi E. Activity patterns in a population of European hamsters (Cricetus cricetus) in an urban environment. Proceedings of the 11th meeting of the International Hamster Workgroup; 2003; Budapest, Hungary. 2003. p. 19–22.
33. Niethammer J. Cricetus cricetus (Linnaeus, 1758)—Hamster (Feldhamster). In: Niethammer J, Krapp F, editors. Handbuch der Säugetiere Europas, Bd 2/I,Rodentia II. Mannheim: Akademisch Verlagsgesellschaft. Wiesbaden. 1982. p. 7–28.
34. Ziomek J, Banaszek A, Nowak U, Walkiewicz A. Behaviour of the common hamster juveniles under natural conditions. In: Proceedings of the 19th Meeting of the International Hamsterworkgroup; 2012 November 20–22; Herkenrode Abbey, Belgium. 2012. p. 27.
35. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2018. Available online at https://www.R-project.org/.
36. Akaike H. Information theory and the maximum likelihood principle. In: 2nd International Symposium on Information Theory. In Petrov B, Csaki B, editors. ISIT 1973: Proceedings of the 2nd International Symposium on Information Theory; 1971 September 2–8, Tsahkadsor, Armenia. Budapest: Academiai Kiado; 1973. p.267-81.
37. Bates D, Maechler M, Bolker B, Walker S, Maechler Martin, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software. 2015; 67(1): 1–48. doi: 10.18637/jss.v067.i01
38. Burnham K, Anderson D. Model selection and multimodel inference: a practical information-theoretic approach. 2nd Edition. New-York: Springer; 2002.
39. Lenth R, Singmann H, Love J, Buerkner P, Herve M. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.1. 2019 September 12. Available from: https://cran.r-project.org/web/packages/emmeans/index.html.
40. Feoktistova N, Meschersky I, Tovpinetz N, Kropotkina M, Surov A. A history of common hamster (Cricetus cricetus) settling in Moscow (Russia) and Simferopol (Ukraine). Beiträge zur Jagd- und Wildforschung. 2013; 38:225–33.
41. Hufnagl S, Siutz C, Millesi E. Diet composition of Common hamsters (Cricetus cricetus) living in an urban environment. Säugetierkdl. 2011. Inf.8: 69–78.
42. Evans J, Dall S, Kight C. Effects of ambient noise on zebra finch vigilance and foraging efficiency. PLoS One. 2018; 13(12): e0209471. doi: 10.1371/journal.pone.0209471 30596692
43. Łopucki R, Perzanowski K. Effects of wind turbines on spatial distribution of the European hamster. Ecological Indicators. 2018; 84:433–436. doi: 10.1016/j.ecolind.2017.09.019
44. Magle S, Angeloni L. Effects of urbanization on the behaviour of a keystone species. Behaviour. 2011; 148(1): 31–54. doi: 10.1163/000579510X545810
45. Francis C, Barber J. A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment. 2013; 11(6): 305–313. doi: 10.1890/120183
46. Surov A, Feoktistova N, Bogomolov P, Tovpinetz N. Distribution of the Common hamster in urban areas. Proceedings of the 21th meeting of the International Hamster Workgroup; 2014 November 14–16, Frankfurt & Gelnhausen, Germany. 2014.
47. MacWhirter R. Effects of reproduction on activity and foraging behaviour of adult female Columbian ground squirrels. Canadian Journal of Zoology. 1991; 69(8): 2209–2216. doi: 10.1139/z91-308
48. Franceschini-Zink C, Millesi E. Reproductive performance in female common hamsters. Zoology. 2008; 111(1): 76–83. doi: 10.1016/j.zool.2007.05.001 18023565
49. Pflaum C, Millesi E. Inter- and intrasexual behaviour in male European hamsters. Proceedings of the 11th meeting of the International Hamster Workgroup; 2003; Budapest, Hungary. 2003. p. 15–8.
50. Quirici V, Castro R, Oyarzún J, Ebensperger L. Female degus (Octodon degus) monitor their environment while foraging socially. Animal Cognition. 2008; 11(3): 441–448. doi: 10.1007/s10071-007-0134-z 18214556
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy