#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Development and validation of rapid environmental DNA (eDNA) detection methods for bog turtle (Glyptemys muhlenbergii)


Autoři: Anish A. Kirtane aff001;  Maxwell L. Wilder aff001;  Hyatt C. Green aff001
Působiště autorů: SUNY-ESF, Department of Environmental and Forest Biology, Syracuse, NY, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222883

Souhrn

Bog turtles (Glyptemys muhlenbergii) are listed as Species of Greatest Conservation Need (SGCN) for wildlife action plans in every state it occurs and multi-state efforts are underway to better characterize extant populations and prioritize restoration efforts. However, traditional sampling methods can be ineffective due to the turtle’s wetland habitat, small size, and burrowing nature. Molecular methods, such as qPCR, provide the ability to overcome this challenge by effectively quantifying minute amounts of turtle DNA left behind in its environment (eDNA). Developing such methods for bog turtles has proved difficult partly because of the high sequence similarity between bog turtles and closely-related, cohabitating species, most often wood turtles (Glyptemys insculpta). Additionally, substrates containing bog turtle eDNA are often rich in organics or other substances that frequently inhibit both DNA extraction and qPCR amplification. Here, we describe the development and validation of a qPCR assay, BT3, targeting the mitochondrial cytochrome oxidase I gene that correctly identifies bog turtles with 100% specificity and sensitivity when tested on 201 blood samples collected from six species over a wide geographic range. We also developed a full-process internal control employing a genetically modified strain of Caenorhabditis elegans to improve DNA extraction methods, limit false negative results due to qPCR inhibition, and measure total DNA recovery from each sample. Using the internal control, we found that DNA recovery varied by over an order of magnitude between samples and likely explains the lack of bog turtle detection in some cases. Methods presented herein are highly-specific and may offer a more cost effective, non-invasive tool to supplement bog turtle population assessments in the Eastern United States. Poor or differential DNA recovery, which remains unmeasured in the vast majority of eDNA studies, significantly reduced the ability to detect bog turtle in their natural environment.

Klíčová slova:

Blood – Bogs – Caenorhabditis elegans – DNA extraction – DNA filter assay – Oligonucleotides – Sediment – Turtles


Zdroje

1. US Fish and Wildlife Service. Bog Turtle (Clemmys muhlenbergii), Northern Population Recovery Plan. Bog Turtle (Clemmys muhlenbergii), Northern Population Recovery Plan. 2001.

2. Schlesinger MD, Corser JD, Perkins KA, White EL. Vulnerability of at-risk species to climate change in New York. New York Natural Heritage Program, Albany, NY. 2011 Mar.

3. Van Dijk, P.P. 2011. Glyptemys muhlenbergii (errata version published in 2016). The IUCN Red List of Threatened Species 2011: e.T4967A97416755.

4. Burke VJ. Landscape ecology and species conservation. Landscape Ecology. 2000 Jan 1;15(1):1–3.

5. Somers AB. A population of bog turtles in the Piedmont of North Carolina: Habitat preferences, capture method efficacy, conservation initiatives, and site enhancement. Greensboro, NC: Department of Biology, University of North Carolina at Greensboro; 2000 May.

6. Tesauro J, Ehrenfeld D. The effects of livestock grazing on the bog turtle [Glyptemys (= Clemmys) muhlenbergii]. Herpetologica. 2007 Sep;63(3):293–300.

7. Somers AB, Mansfield-Jones J. Role of trapping in detection of a small bog turtle (Glyptemys muhlenbergii) population. Chelonian Conservation and Biology. 2008 Aug;7(1):149–55.

8. Pittman SE, King TL, Faurby S, Dorcas ME. Demographic and genetic status of an isolated population of bog turtles (Glyptemys muhlenbergii): implications for managing small populations of long-lived animals. Conservation Genetics. 2011 Dec 1;12(6):1589–601.

9. Bronnenhuber JE, Wilson CC. Combining species-specific COI primers with environmental DNA analysis for targeted detection of rare freshwater species. Conservation genetics resources. 2013 Dec 1;5(4):971–5.

10. Olson ZH, Briggler JT, Williams RN. An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water. Wildlife Research. 2012 Oct 19;39(7):629–36.

11. Mahon AR, Jerde CL, Galaska M, Bergner JL, Chadderton WL, Lodge DM, Hunter ME, Nico LG. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PloS one. 2013 Mar 5;8(3):e58316. doi: 10.1371/journal.pone.0058316 23472178

12. Kelly RP, Port JA, Yamahara KM, Crowder LB. Using environmental DNA to census marine fishes in a large mesocosm. PloS one. 2014 Jan 15;9(1):e86175. doi: 10.1371/journal.pone.0086175 24454960

13. Smart AS, Tingley R, Weeks AR, van Rooyen AR, McCarthy MA. Environmental DNA sampling is more sensitive than a traditional survey technique for detecting an aquatic invader. Ecological applications. 2015 Oct;25(7):1944–52. doi: 10.1890/14-1751.1 26591459

14. Davy CM, Kidd AG, Wilson CC. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PloS one. 2015 Jul 22;10(7):e0130965. doi: 10.1371/journal.pone.0130965 26200348

15. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society open science. 2015 Jul 1;2(7):150088. doi: 10.1098/rsos.150088 26587265

16. Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C. Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology. 2016 Feb;25(4):929–42. doi: 10.1111/mec.13428 26479867

17. Murray DC, Bunce M, Cannell BL, Oliver R, Houston J, White NE, Barrero RA, Bellgard MI, Haile J. DNA-based faecal dietary analysis: a comparison of qPCR and high throughput sequencing approaches. PLoS One. 2011 Oct 6;6(10):e25776. doi: 10.1371/journal.pone.0025776 21998697

18. Harper LR, Lawson Handley L, Hahn C, Boonham N, Rees HC, Gough KC, Lewis E, Adams IP, Brotherton P, Phillips S, Haenfling B. Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus). Ecology and evolution. 2018 Jun;8(12):6330–41. doi: 10.1002/ece3.4013 29988445

19. Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, Mahon AR, Pfrender ME, Lamberti GA, Lodge DM. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular ecology resources. 2016 Jan;16(1):29–41. doi: 10.1111/1755-0998.12433 26032773

20. Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of applied ecology. 2012 Aug;49(4):953–9.

21. Lindberg E, Albrechtsen HJ, Jacobsen CS. Inhibition of real-time PCR in DNA extracts from aquifer sediment. Geomicrobiology Journal. 2007 Jul 23;24(3–4):343–52.

22. Green HC, Field KG. Sensitive detection of sample interference in environmental qPCR. Water research. 2012 Jun 15;46(10):3251–60. doi: 10.1016/j.watres.2012.03.041 22560896

23. Schriewer A, Wehlmann A, Wuertz S. Improving qPCR efficiency in environmental samples by selective removal of humic acids with DAX-8. Journal of microbiological methods. 2011 Apr 1;85(1):16–21. doi: 10.1016/j.mimet.2010.12.027 21256890

24. Feldman CR, Parham JF. Molecular phylogenetics of emydine turtles: taxonomic revision and the evolution of shell kinesis. Molecular phylogenetics and evolution. 2002 Mar 1;22(3):388–98. doi: 10.1006/mpev.2001.1070 11884163

25. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution. 2013 Jan 16;30(4):772–80. doi: 10.1093/molbev/mst010 23329690

26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990 Oct 5;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 2231712

27. Rosenbaum PA, Robertson JM, Zamudio KR. Unexpectedly low genetic divergences among populations of the threatened bog turtle (Glyptemys muhlenbergii). Conservation Genetics. 2007 Apr 1;8(2):331–42.

28. Green HC, Haugland RA, Varma M, Millen HT, Borchardt MA, Field KG, Walters WA, Knight R, Sivaganesan M, Kelty CA, Shanks OC. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples. Appl. Environ. Microbiol. 2014 May 15;80(10):3086–94. doi: 10.1128/AEM.04137-13 24610857

29. Sims JR, Ow MC, Nishiguchi MA, Kim K, Sengupta P, Hall SE. Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways. Elife. 2016 Jun 28;5:e11642. doi: 10.7554/eLife.11642 27351255

30. Murphy NM, McLauchlin J, Ohai C, Grant KA. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. International journal of food microbiology. 2007 Nov 30;120(1–2):110–9. doi: 10.1016/j.ijfoodmicro.2007.06.006 17604864

31. Rajal VB, McSwain BS, Thompson DE, Leutenegger CM, Kildare BJ, Wuertz S. Validation of hollow fiber ultrafiltration and real-time PCR using bacteriophage PP7 as surrogate for the quantification of viruses from water samples. Water Research. 2007 Apr 1;41(7):1411–22. doi: 10.1016/j.watres.2006.12.034 17313967

32. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May 1;77(1):71–94. 4366476

33. Renan S, Gafny S, Perl RB, Roll U, Malka Y, Vences M, Geffen E. Living quarters of a living fossil—Uncovering the current distribution pattern of the rediscovered Hula painted frog (Latonia nigriventer) using environmental DNA. Molecular ecology. 2017 Dec;26(24):6801–12. doi: 10.1111/mec.14420 29117632

34. Turner CR, Barnes MA, Xu CC, Jones SE, Jerde CL, Lodge DM. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution. 2014 Jul;5(7):676–84.

35. Rees HC, Maddison BC, Middleditch DJ, Patmore JR, Gough KC. The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology. Journal of Applied Ecology. 2014 Oct;51(5):1450–9.

36. Turner CR, Uy KL, Everhart RC. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation. 2015 Mar 1;183:93–102.

37. Demane`che S, Jocteur-Monrozier L, Quiquampoix H, Simonet P. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl. Environ. Microbiol. 2001 Jan 1;67(1):293–9. doi: 10.1128/AEM.67.1.293-299.2001 11133458

38. Recorbet G, Picard C, Normand P, Simonet P. Kinetics of the persistence of chromosomal DNA from genetically engineered Escherichia coli introduced into soil. Appl. Environ. Microbiol. 1993 Dec 1;59(12):4289–94. 8285718

39. Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadderton L, Egan SP, Feder JL, Mahon AR, Pfrender ME. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular ecology. 2012 Jun;21(11):2555–8. doi: 10.1111/j.1365-294X.2012.05600.x 22624944

40. Pilliod DS, Goldberg CS, Arkle RS, Waits LP. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences. 2013 May 22;70(8):1123–30.

41. Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata ZI. Estimation of fish biomass using environmental DNA. PloS one. 2012 Apr 26;7(4):e35868. doi: 10.1371/journal.pone.0035868 22563411

42. Merkes CM, McCalla SG, Jensen NR, Gaikowski MP, Amberg JJ. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS One. 2014 Nov 17;9(11):e113346. doi: 10.1371/journal.pone.0113346 25402206

43. Lacoursière-Roussel A, Dubois Y, Normandeau E, Bernatchez L. Improving herpetological surveys in eastern North America using the environmental DNA method. Genome. 2016 Aug 30;59(11):991–1007. doi: 10.1139/gen-2015-0218 27788021

44. Briggs DE, Summons RE. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays. 2014 May;36(5):482–90. doi: 10.1002/bies.201400010 24623098


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#