#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The trajectory of patterns of light and sedentary physical activity among females, ages 14-23


Autoři: Deborah A. Cohen aff001;  Bing Han aff002;  Lisa Kraus aff002;  Deborah Rohm Young aff003
Působiště autorů: Social and Economic Well Being, RAND Corporation, Santa Monica, CA, United States of America aff001;  Statistics, RAND Corporation, Santa Monica, CA, United States of America aff002;  Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, United States of America aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223737

Souhrn

Purpose

Light physical activity (LPA) and patterns of sedentary behavior influence cardio-metabolic health independently of moderate-to-vigorous physical activity. Understanding the trajectory and determinants of these activity levels over time may provide insights relevant to public health practice.

Methods

We measured a cohort of young women recruited in middle school (age 14) using accelerometry for 1 week and remeasured them in high school (age 17) and again at age 23 (n = 385). We assessed changes in LPA and patterns of sedentary behavior by hours in a day. We examined the association of social and contextual factors, including employment status, screen time, and neighborhood context with LPA and sedentary behavior patterns.

Results

The amount of LPA decreased over time, while the length of LPA bouts tended to increase. Sedentary bout durations increased over time and sedentary breaks decreased. Sedentary time and bout length were correlated with internet use, rather than with TV or videogaming. Employment was associated with less sedentary time; being a student was associated with longer sedentary time and bouts.

Conclusions

Because LPA and sedentary breaks can be protective for cardio-metabolic health, and the duration of sedentary bouts increase as women age from adolescence to young adulthood, worksites and college campuses should remind employees and students to take frequent activity breaks when they use computers and the internet for long stretches.

Klíčová slova:

Adipose tissue – Behavior – Employment – Internet – Physical activity – Schools – Video games – Walking


Zdroje

1. Gay JL, Buchner DM, Schmidt MD. Dose-response association of physical activity with HbA1c: Intensity and bout length. Prev Med. 2016;86:58–63. doi: 10.1016/j.ypmed.2016.01.008 26827616.

2. McGuire KA, Ross R. Incidental physical activity is positively associated with cardiorespiratory fitness. Med Sci Sports Exerc. 2011;43(11):2189–94. doi: 10.1249/MSS.0b013e31821e4ff2 21502894.

3. Robson J, Janssen I. Intensity of bouted and sporadic physical activity and the metabolic syndrome in adults. PeerJ. 2015;3:e1437. doi: 10.7717/peerj.1437 26644978; PubMed Central PMCID: PMC4671153.

4. Dowd KP, Harrington DM, Hannigan A, Donnelly AE. Light-intensity physical activity is associated with adiposity in adolescent females. Med Sci Sports Exerc. 2014;46(12):2295–300. doi: 10.1249/MSS.0000000000000357 24797308.

5. Dempsey PC, Sacre JW, Larsen RN, Straznicky NE, Sethi P, Cohen ND, et al. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes. Journal of hypertension. 2016;34(12):2376–82. doi: 10.1097/HJH.0000000000001101 27512975.

6. Wullems JA, Verschueren SM, Degens H, Morse CI, Onambele GL. A review of the assessment and prevalence of sedentarism in older adults, its physiology/health impact and non-exercise mobility counter-measures. Biogerontology. 2016;17(3):547–65. doi: 10.1007/s10522-016-9640-1 26972899; PubMed Central PMCID: PMC4889631.

7. O'Donoghue G, Perchoux C, Mensah K, Lakerveld J, van der Ploeg H, Bernaards C, et al. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach. BMC Public Health. 2016;16:163. doi: 10.1186/s12889-016-2841-3 26887323; PubMed Central PMCID: PMC4756464.

8. Lyden K, Keadle SK, Staudenmayer J, Braun B, Freedson PS. Discrete features of sedentary behavior impact cardiometabolic risk factors. Med Sci Sports Exerc. 2015;47(5):1079–86. doi: 10.1249/MSS.0000000000000499 25202848; PubMed Central PMCID: PMC4362844.

9. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005. doi: 10.1249/MSS.0b013e3181930355 19346988.

10. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10. Epub 2016/08/01. doi: 10.1016/S0140-6736(16)30370-1 27475271.

11. Bailey DP, Charman SJ, Ploetz T, Savory LA, Kerr CJ. Associations between prolonged sedentary time and breaks in sedentary time with cardiometabolic risk in 10-14-year-old children: The HAPPY study. J Sports Sci. 2017;35(22):2164–71. doi: 10.1080/02640414.2016.1260150 27892780.

12. Saunders TJ, Tremblay MS, Mathieu ME, Henderson M, O'Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143. doi: 10.1371/journal.pone.0079143 24278117; PubMed Central PMCID: PMC3835898.

13. Chastin SF, Buck C, Freiberger E, Murphy M, Brug J, Cardon G, et al. Systematic literature review of determinants of sedentary behaviour in older adults: a DEDIPAC study. The international journal of behavioral nutrition and physical activity. 2015;12:127. doi: 10.1186/s12966-015-0292-3 26437960; PubMed Central PMCID: PMC4595239.

14. Chastin SF, Egerton T, Leask C, Stamatakis E. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring). 2015;23(9):1800–10. doi: 10.1002/oby.21180 26308477.

15. Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–239. doi: 10.1139/apnm-2015-0663 27306431.

16. Honda T, Chen S, Yonemoto K, Kishimoto H, Chen T, Narazaki K, et al. Sedentary bout durations and metabolic syndrome among working adults: a prospective cohort study. BMC Public Health. 2016;16:888. doi: 10.1186/s12889-016-3570-3 27562190; PubMed Central PMCID: PMC5000401.

17. Judice PB, Silva AM, Berria J, Petroski EL, Ekelund U, Sardinha LB. Sedentary patterns, physical activity and health-related physical fitness in youth: a cross-sectional study. The international journal of behavioral nutrition and physical activity. 2017;14(1):25. doi: 10.1186/s12966-017-0481-3 28259140; PubMed Central PMCID: PMC5336686.

18. Vasankari V, Husu P, Vaha-Ypya H, Suni J, Tokola K, Halonen J, et al. Association of objectively measured sedentary behaviour and physical activity with cardiovascular disease risk. European journal of preventive cardiology. 2017;24(12):1311–8. doi: 10.1177/2047487317711048 28530126.

19. Kallio P, Pahkala K, Heinonen OJ, Tammelin T, Hirvensalo M, Telama R, et al. Physical Inactivity from Youth to Adulthood and Risk of Impaired Glucose Metabolism. Med Sci Sports Exerc. 2018;50(6):1192–8. Epub 2018/01/18. doi: 10.1249/MSS.0000000000001555 29337718.

20. Bergouignan A, Latouche C, Heywood S, Grace MS, Reddy-Luthmoodoo M, Natoli AK, et al. Frequent interruptions of sedentary time modulates contraction- and insulin-stimulated glucose uptake pathways in muscle: Ancillary analysis from randomized clinical trials. Scientific reports. 2016;6:32044. doi: 10.1038/srep32044 27554943; PubMed Central PMCID: PMC4995429.

21. Cliff DP, Jones RA, Burrows TL, Morgan PJ, Collins CE, Baur LA, et al. Volumes and bouts of sedentary behavior and physical activity: associations with cardiometabolic health in obese children. Obesity (Silver Spring). 2014;22(5):E112–8. doi: 10.1002/oby.20698 24788574.

22. Saunders TJ, Larouche R, Colley RC, Tremblay MS. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies. Journal of nutrition and metabolism. 2012;2012:712435. doi: 10.1155/2012/712435 22754695; PubMed Central PMCID: PMC3382951.

23. Lippi G, Maffulli N. Biological influence of physical exercise on hemostasis. Seminars in thrombosis and hemostasis. 2009;35(3):269–76. Epub 2009/05/20. doi: 10.1055/s-0029-1222605 19452402.

24. Seals DR, Desouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. Journal of applied physiology. 2008;105(4):1323–32. Epub 2008/06/28. doi: 10.1152/japplphysiol.90553.2008 18583377; PubMed Central PMCID: PMC2576026.

25. Lissak G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental research. 2018;164:149–57. Epub 2018/03/03. doi: 10.1016/j.envres.2018.01.015 29499467.

26. Knaeps S, De Baere S, Bourgois J, Mertens E, Charlier R, Lefevre J. Substituting Sedentary Time With Light and Moderate to Vigorous Physical Activity is Associated With Better Cardiometabolic Health. Journal of physical activity & health. 2018;15(3):197–203. Epub 2017/09/06. doi: 10.1123/jpah.2017-0102 28872401.

27. Raichlen DA, Pontzer H, Harris JA, Mabulla AZ, Marlowe FW, Josh Snodgrass J, et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am J Hum Biol. 2017;29(2). Epub 2016/10/11. doi: 10.1002/ajhb.22919 27723159.

28. Farooq MA, Parkinson KN, Adamson AJ, Pearce MS, Reilly JK, Hughes AR, et al. Timing of the decline in physical activity in childhood and adolescence: Gateshead Millennium Cohort Study. British journal of sports medicine. 2018;52(15):1002–6. Epub 2017/03/16. doi: 10.1136/bjsports-2016-096933 28288966; PubMed Central PMCID: PMC6204977.

29. Dalene KE, Anderssen SA, Andersen LB, Steene-Johannessen J, Ekelund U, Hansen BH, et al. Secular and longitudinal physical activity changes in population-based samples of children and adolescents. Scand J Med Sci Sports. 2018;28(1):161–71. Epub 2017/03/17. doi: 10.1111/sms.12876 28299832.

30. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57. doi: 10.1016/S0140-6736(12)60646-1 22818937.

31. Katzmarzyk PT, Gledhill N, Shephard RJ. The economic burden of physical inactivity in Canada. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne. 2000;163(11):1435–40. 11192648.

32. McMillan LB, Aitken D, Ebeling P, Jones G, Scott D. The relationship between objectively assessed physical activity and bone health in older adults differs by sex and is mediated by lean mass. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2018;29(6):1379–88. Epub 2018/03/14. doi: 10.1007/s00198-018-4446-4 29532131.

33. McVeigh JA, Zhu K, Mountain J, Pennell CE, Lye SJ, Walsh JP, et al. Longitudinal Trajectories of Television Watching Across Childhood and Adolescence Predict Bone Mass at Age 20 Years in the Raine Study. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. 2016;31(11):2032–40. Epub 2016/07/06. doi: 10.1002/jbmr.2890 27378122.

34. Schipperijn J, Ried-Larsen M, Nielsen MS, Holdt AF, Grontved A, Ersboll AK, et al. A Longitudinal Study of Objectively Measured Built Environment as Determinant of Physical Activity in Young Adults: The European Youth Heart Study. Journal of physical activity & health. 2015;12(7):909–14. doi: 10.1123/jpah.2014-0039 25157562.

35. Cohen DA, Han B, Kraus L, Young DR. The Contribution of the Built Environment to Physical Activity Among Young Women. Environment and Behavior. 2018:0013916517753036. doi: 10.1177/0013916517753036

36. Vaisto J, Haapala EA, Viitasalo A, Schnurr TM, Kilpelainen TO, Karjalainen P, et al. Longitudinal associations of physical activity and sedentary time with cardiometabolic risk factors in children. Scand J Med Sci Sports. 2019;29(1):113–23. Epub 2018/10/03. doi: 10.1111/sms.13315 30276872; PubMed Central PMCID: PMC6485341.

37. Smith L, Aggio D, Hamer M. Longitudinal patterns in objective physical activity and sedentary time in a multi-ethnic sample of children from the UK. Pediatric obesity. 2018;13(2):120–6. Epub 2017/05/26. doi: 10.1111/ijpo.12222 28544804; PubMed Central PMCID: PMC5811813.

38. Schwarzfischer P, Gruszfeld D, Socha P, Luque V, Closa-Monasterolo R, Rousseaux D, et al. Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years. The international journal of behavioral nutrition and physical activity. 2018;15(1):126. Epub 2018/12/12. doi: 10.1186/s12966-018-0756-3 30526600; PubMed Central PMCID: PMC6286599.

39. Knaeps S, Bourgois JG, Charlier R, Mertens E, Lefevre J, Wijndaele K. Ten-year change in sedentary behaviour, moderate-to-vigorous physical activity, cardiorespiratory fitness and cardiometabolic risk: independent associations and mediation analysis. British journal of sports medicine. 2018;52(16):1063–8. Epub 2016/08/06. doi: 10.1136/bjsports-2016-096083 27491779; PubMed Central PMCID: PMC6089204.

40. Stevens J, Murray DM, Catellier DJ, Hannan PJ, Lytle LA, Elder JP, et al. Design of the Trial of Activity in Adolescent Girls (TAAG). Contemp Clin Trials. 2005;26(2):223–33. Epub 2005/04/20. doi: 10.1016/j.cct.2004.12.011 15837442; PubMed Central PMCID: PMC1430598.

41. Mohan Y, Cornejo M, Sidell M, Smith J, Young DR. Re-recruiting young adult women into a second follow-up study. Contemporary Clinical Trials Communications. 2017;5:160–7. doi: 10.1016/j.conctc.2017.02.006 29740632

42. Treuth MS, Schmitz K, Catellier DJ, McMurray RG, Murray DM, Almeida MJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. Med Sci Sports Exerc. 2004;36(7):1259–66. Epub 2004/07/06. 15235335; PubMed Central PMCID: PMC2423321.

43. Bellettiere J, Carlson JA, Rosenberg D, Singhania A, Natarajan L, Berardi V, et al. Gender and Age Differences in Hourly and Daily Patterns of Sedentary Time in Older Adults Living in Retirement Communities. PLoS One. 2015;10(8):e0136161. doi: 10.1371/journal.pone.0136161 26296095; PubMed Central PMCID: PMC4546658.

44. Brener ND, Kann L, Smith TK. Reliability and validity of the School Health Policies and Programs Study 2000 questionnaires. The Journal of school health. 2003;73(1):29–37. Epub 2003/03/08. doi: 10.1111/j.1746-1561.2003.tb06556.x 12621721.

45. Sherry B, Jefferds ME, Grummer-Strawn LM. Accuracy of adolescent self-report of height and weight in assessing overweight status: a literature review. Arch Pediatr Adolesc Med. 2007;161(12):1154–61. Epub 2007/12/07. doi: 10.1001/archpedi.161.12.1154 18056560.

46. USCensus. American Community Survey https://www.census.gov/programs-surveys/acs/ 2017.

47. Score W. “Walk Score Methodology” https://www.walkscore.com/methodology.shtml 2015 Accessed November 24, 2015.

48. Mohan Y, Cornejo M, Sidell M, Smith J, Young DR. Re-recruiting young adult women into a second follow-up study. Contemp Clin Trials Commun. 2017;5:160–7. Epub 2017/02/14. doi: 10.1016/j.conctc.2017.02.006 29740632; PubMed Central PMCID: PMC5936695.

49. Evenson KR, Wen F, Golinelli D, Rodriguez DA, Cohen DA. Measurement Properties of a Park Use Questionnaire. Environ Behav. 2013;45(4):526–47. doi: 10.1177/0013916512436421 23853386.

50. Carson V, Staiano AE, Katzmarzyk PT. Physical activity, screen time, and sitting among U.S. adolescents. Pediatr Exerc Sci. 2015;27(1):151–9. doi: 10.1123/pes.2014-0022 25050541; PubMed Central PMCID: PMC4504197.

51. Costigan SA, Barnett L, Plotnikoff RC, Lubans DR. The health indicators associated with screen-based sedentary behavior among adolescent girls: a systematic review. The Journal of adolescent health: official publication of the Society for Adolescent Medicine. 2013;52(4):382–92. doi: 10.1016/j.jadohealth.2012.07.018 23299000.

52. Mitchell JA, Pate RR, Dowda M, Mattocks C, Riddoch C, Ness AR, et al. A prospective study of sedentary behavior in a large cohort of youth. Med Sci Sports Exerc. 2012;44(6):1081–7. Epub 2011/12/07. doi: 10.1249/MSS.0b013e3182446c65 22143113; PubMed Central PMCID: PMC3342456.

53. Ridley K, Olds TS, Hill A. The Multimedia activity recall for children and adolescents (MARCA): development and evaluation. International Journal of Behavioral Nutrition and Physical Activity. 2006;3(1):10. doi: 10.1186/1479-5868-3-10 16725055

54. Peachey MM, Richardson J, V Tang A, Dal-Bello Haas V, Gravesande J. Environmental, behavioural and multicomponent interventions to reduce adults' sitting time: a systematic review and meta-analysis. British journal of sports medicine. 2018:bjsports-2017-098968. doi: 10.1136/bjsports-2017-098968 30352864


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#