Sixty years since the creation of Lake Kariba: Thermal and oxygen dynamics in the riverine and lacustrine sub-basins
Autoři:
Elisa Calamita aff001; Martin Schmid aff002; Manuel Kunz aff002; Mzime Regina Ndebele-Murisa aff003; Christopher H. D. Magadza aff004; Imasiku Nyambe aff005; Bernhard Wehrli aff001
Působiště autorů:
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
aff001; Eawag, Surface Waters—Research and Management, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
aff002; Department of Freshwater and Fishery Sciences, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
aff003; Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe
aff004; School of Mines, UNZA, Lusaka, Zambia
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224679
Souhrn
The current boom of dam construction at low latitudes endangers the integrity and function of major tropical river systems. A deeper understanding of the physical and chemical functioning of tropical reservoirs is essential to mitigate dam-related impacts. However, the development of predictive tools is hampered by a lack of consistent data on physical mixing and biogeochemistry of tropical reservoirs. In this study, we focus on Lake Kariba (Southern Africa), the largest artificial lake in the world by volume. Kariba Dam forms a transboundary reservoir between Zambia and Zimbabwe, and therefore its management represents a socio-politically sensitive issue because the Kariba Dam operation completely changed the downstream hydrological regime. Although Lake Kariba represents a unique and scientifically interesting case study, there is no consistent dataset documenting its physical and chemical behaviour over time. This limits the scope for quantitative studies of this reservoir and its downstream impacts. To address this research gap, we aggregated a consistent database of in situ measurements of temperature and oxygen depth profiles for the entire 60 years of Lake Kariba’s lifetime and performed a detailed statistical analysis of the thermal and oxygen regime of the artificial lake to classify the different behaviours of the lake’s sub-basins. We demonstrate that the seasonal stratification strongly depends on the depth of the water column and on the distance from the lake inflow. Satellite data confirm these spatiotemporal variations in surface temperature, and reveal a consistent longitudinal warming trend of the lake surface water temperature of about 1.5°C from the inflow to the dam. Finally, our results suggest that the stratification dynamics of the lacustrine sub-basins have the potential to alter the downstream Zambezi water quality. Future research should focus on assessing such alterations and developing strategies to mitigate them.
Klíčová slova:
Lakes – Oxygen – Rivers – Surface water – Water columns – Water quality – Dissolved oxygen – Surface temperature
Zdroje
1. Wilcox BP. Transformative ecosystem change and ecohydrology: ushering in a new era for watershed management. Ecohydrology. 2010;3: 126–130. doi: 10.1002/eco.104
2. Wohl E, Barros A, Brunsell N, Chappell NA, Coe M, Giambelluca T, et al. The hydrology of the humid tropics. Nat Clim Chang. 2012;2: 655–662. doi: 10.1038/nclimate1556
3. United Nations. World Population Prospects—Population Division—United Nations [Internet]. [cited 16 Mar 2019]. Available: https://population.un.org/wpp/
4. Wilcox BP, Asbjornsen H. Emerging issues in tropical ecohydrology preface. Ecohydrology. 2018;11: e1970. doi: 10.1002/eco.1970
5. Best J. Anthropogenic stresses on the world’s big rivers. Nat Geosci. 2019;12: 7–21. doi: 10.1038/s41561-018-0262-x
6. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat Sci. 2015;77: 161–170. doi: 10.1007/s00027-014-0377-0
7. Friedl G, Wüest A. Disrupting biogeochemical cycles-Consequences of damming. Aquat Sci. 2002;64: 55–65. 1015-1621/02/010055-11
8. Rueda F, Moreno-Ostos E, Armengol J. The residence time of river water in reservoirs. Ecol Modell. 2006;191: 260–274. doi: 10.1016/j.ecolmodel.2005.04.030
9. Mwedzi T, Katiyo L, Mugabe FT, Bere T, Bangira C, Mangadze T, et al. A spatial assessment of stream-flow characteristics and hydrologic alterations, post dam construction in the Manyame catchment, Zimbabwe. Water SA. 2016;42: 194. doi: 10.4314/wsa.v42i2.03
10. Van Cappellen P, Maavara T. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol Hydrobiol. 2016;16: 106–111. doi: 10.1016/j.ecohyd.2016.04.001
11. Winton RS, Calamita E, Wehrli B. Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences. 2019;16: 1657–1671. doi: 10.5194/bg-16-1657-2019
12. Ward J V, Stanford JA. Thermal responses in the evolutionary ecology of aquatic insects. Ann. Rev. Entomol. 1982; 27:97–117.
13. Caissie D. The thermal regime of rivers: a review. Freshw Biol. 2006;51: 1389–1406. doi: 10.1111/j.1365-2427.2006.01597.x
14. Svendsen MBS, Bushnell PG, Christensen EAF, Steffensen JF. Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated constant oxygen consumption and respirometers of different sizes. J Fish Biol. 2016;88: 51–64. doi: 10.1111/jfb.12851 26768971
15. Danladi Bello A-A, Hashim N, Mohd Haniffah M. Predicting impact of climate change on water temperature and dissolved oxygen in tropical rivers. Climate. 2017;5: 58. doi: 10.3390/cli5030058
16. Straskraba M, Tundisi JG, Duncan A. State of the art of reservoir limnology and water quality management. Comparative reservoir limnology and water quality management. Kluwer Academic Publishers; 1993. pp. 213–288.
17. Magadza CHD. Kariba reservoir: Experience and lessons learned. Lakes Reserv Res Manag. 2006;11: 271–286. doi: 10.1111/j.1440-1770.2006.00308.x
18. Mahere T, Mtsambiwa M, Chifamba P, Nhiwatiwa T. Climate change impact on the limnology of Lake Kariba, Zambia–Zimbabwe. African J Aquat Sci. 2014;39: 215–221. doi: 10.2989/16085914.2014.927350
19. Marshall BE. An assessment of climate change and stratification in Lake Kariba (Zambia-Zimbabwe). Lakes Reserv Res Manag. 2017;22: 229–240. doi: 10.1111/lre.12185
20. Hamel P, Riveros-Iregui D, Ballari D, Browning T, Célleri R, Chandler D, et al. Watershed services in the humid tropics: Opportunities from recent advances in ecohydrology. Ecohydrology. 2018;11: e1921. doi: 10.1002/eco.1921
21. Ndebele-Murisa MR. Associations between climate, water environment and phytoplankton production in African lakes. Phytoplankt Biol Classif Environ Impacts. 2014; 37–62.
22. Ndebele-Murisa MR, Musil CF, Magadza CHDD, Raitt L. A decline in the depth of the mixed layer and changes in other physical properties of Lake Kariba’s water over the past two decades. Hydrobiologia. 2014;721: 185–195. doi: 10.1007/s10750-013-1660-0
23. O’Reilly CM, Alin SR, Plisnier P-D, Cohen AS, McKee BA. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature. 2003;424: 766–768. doi: 10.1038/nature01833 12917682
24. Verburg P, Antenucci JP. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J Geophys Res. 2010;115: D11109. doi: 10.1029/2009JD012839
25. World Bank. The Zambezi River Basin. A Multi-Sector Investment Opportunities Analysis. The World Bank Washington, DC. 2010.
26. Magadza CHDD. Environmental state of Lake Kariba and Zambezi River Valley: Lessons learned and not learned. Lakes Reserv Res Manag. 2010;15: 167–192. doi: 10.1111/j.1440-1770.2010.00438.x
27. Begg GW. Limnological observations on Lake Kariba during 1967 with emphasis on some special features. Limnol Oceanogr. 1970;15: 776–788. doi: 10.4319/lo.1970.15.5.0776
28. Hutchinson P. Increase in rainfall due to Lake Kariba. Weather. 1973;28: 499–504. doi: 10.1002/j.1477-8696.1973.tb00816.x
29. Chao BF, Wu YH, Li YS. Impact of artificial reservoir water impoundment on global sea level. Science. 2008;320: 212–214. doi: 10.1126/science.1154580 18339903
30. Ndebele-Murisa MR. An analysis of primary and secondary production in Lake Kariba in a changing climate. PhD Thesis. University of Western Cape. 2011.
31. Balon EK, Coche AG. Lake Kariba: a man made tropical ecosystem in Central Africa. Dr. W. Junk b.v., Publishers, The Hague. 1974. doi: 10.1007/978-94-010-2334-4
32. Zuijdgeest AL, Zurbrügg R, Blank N, Fulcri R, Senn DB, Wehrli B. Seasonal dynamics of carbon and nutrients from two contrasting tropical floodplain systems in the Zambezi River basin. Biogeosciences. 2015;12: 7535–7547. doi: 10.5194/bg-12-7535-2015
33. Teodoru CR, Nyoni FC, Borges A V., Darchambeau F, Nyambe I, Bouillon S. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences. 2015;12: 2431–2453. doi: 10.5194/bg-12-2431-2015
34. Calamita E, Schmid M, Kunz M, Ndebele-Murisa MR, Magadza CHD, Nyambe I, et al. Sixty years of Lake Kariba: thermal and oxygen dynamics in the riverine and lacustrine sub-basins (dataset). 2019; doi: 10.3929/ETHZ-B-000334971
35. Coche AG. Description of physico-chemical aspects of Lake Kariba, an impoundment, in Zambia-Rhodesia. 1968.
36. Magadza CHD, Heinenan A, Dhlomo E. Some limnochemical data from the Sanyati Basin, Lake Kariba, and the Zambezi River below the dam wall. ULKRS Bull.; 1987.
37. Magadza CHD, Heinenan A, Dhlomo E. Chemical data for the Sanyati Bay, Lake Kariba and the Zambezi River below the dam wall. ULKRS Bull.; 1988. 1(87), pp.1–33.
38. Donlon C, Robinson I, Casey KS, Vazquez-Cuervo J, Armstrong E, Arino O, et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull Am Meteorol Soc. 2007;88: 1197–1214. doi: 10.1175/BAMS-88-8-1197
39. Chin TM, Vazquez-Cuervo J, Armstrong EM. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens Environ. 2017;200: 154–169. doi: 10.1016/j.rse.2017.07.029
40. Schneider P, Hook SJ. Space observations of inland water bodies show rapid surface warming since 1985. Geophys Res Lett. 2010;37. doi: 10.1029/2010GL045059
41. Zhang G, Yao T, Xie H, Qin J, Ye Q, Dai Y, et al. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data. J Geophys Res Atmos. 2014;119: 8552–8567. doi: 10.1002/2014JD021615
42. Gholizadeh M, Melesse A, Reddi L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors. 2016;16: 1298. doi: 10.3390/s16081298 27537896
43. Yu H, Tsuno H, Hidaka T, Jiao C. Chemical and thermal stratification in lakes. Limnology. 2010;11: 251–257. doi: 10.1007/s10201-010-0310-8
44. Khan O, Mwelwa-Mutekenya E, Crosato A, Zhou Y. Effects of dam operation on downstream river morphology: the case of the middle Zambezi River. Proc Inst Civ Eng—Water Manag. 2014;167: 585–600. doi: 10.1680/wama.13.00122
45. Deas ML, Lowney CL. Water Temperature Modeling Review—Central Valley. 2000.
46. Parker F, Benedict B, Tsai C. Evaluation of mathematical models for temperature prediction in deep reservoirs. National Environmental Research Center; 1975.
47. Orlob G. Mathematical modeling of water quality: Streams, lakes and reservoirs. John Wiley & Sons; 1983.
48. Ledec G, Quintero JD. Good dams and bad dams: environmental criteria for site selection of hydroelectric projects. Latin America and the Caribbean Region:Sustainable Development Working Paper No. 16. 2003. p. 21.
49. Lopez H, West R, Dong S, Goni G, Kirtman B, Lee S-K, et al. Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes. Nat Clim Chang. 2018;8: 414–420. doi: 10.1038/s41558-018-0116-y
50. Woolway RI, Merchant CJ. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci Rep. 2017;7: 4130. doi: 10.1038/s41598-017-04058-0 28646229
51. Walker WW. Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Resour Res. 1979;15: 1463–1470. doi: 10.1029/WR015i006p01463
52. Matthews DA, Effler SW. Long-term changes in the areal hypolimnetic oxygen deficit (AHOD) of Onondaga Lake: Evidence of sediment feedback. Limnol Oceanogr. 2006;51: 702–714. doi: 10.4319/lo.2006.51.1_part_2.0702
53. Boehrer B, Schultze M. Stratification of lakes. Rev Geophys. 2008;46: RG2005. doi: 10.1029/2006RG000210
54. Soares MCS, Marinho MM, Huszar VLMM, Branco CWCC, Azevedo SMFOFO. The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lakes Reserv Res Manag. 2008;13: 257–269. doi: 10.1111/j.1440-1770.2008.00379.x
55. Soares MCS, Marinho MM, Azevedo SMOF, Branco CWC, Huszar VLM. Eutrophication and retention time affecting spatial heterogeneity in a tropical reservoir. Limnologica. 2012;42: 197–203. doi: 10.1016/j.limno.2011.11.002
56. DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB. Spatial Heterogeneity of Methane Ebullition in a Large Tropical Reservoir. Environ Sci Technol. 2011;45: 9866–9873. doi: 10.1021/es2005545 21985534
57. Pacheco FS, Soares MCS, Assireu AT, Curtarelli MP, Roland F, Abril G, et al. The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water–air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences. 2015;12: 147–162. doi: 10.5194/bg-12-147-2015
58. Vašek M, Prchalová M, Říha M, Blabolil P, Čech M, Draštík V, et al. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: Implications for ecological monitoring and management. Ecol Indic. 2016;63: 219–230. doi: 10.1016/j.ecolind.2015.11.061
59. Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, et al. Response diversity, ecosystem change, and resilience. Front Ecol Environ. 2003;1: 488–494. doi: 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2
60. Hansen GJA, Gaeta JW, Hansen JF, Carpenter SR. Learning to manage and managing to learn: sustaining freshwater recreational fisheries in a changing environment. Fisheries. 2015;40: 56–64. doi: 10.1080/03632415.2014.996804
61. Steinsberger T, Schmid M, Wüest A, Schwefel R, Wehrli B, Müller B. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes. Biogeosciences. 2017;14: 3275–3285. doi: 10.5194/bg-14-3275-2017
62. Kunz MJ, Wüest A, Wehrli B, Landert J, Senn DB. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands. Water Resour Res. 2011;47. doi: 10.1029/2010WR009451
63. Müller B, Bryant LD, Matzinger A, Wüest A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ Sci Technol. 2012;46: 9964–9971. doi: 10.1021/es301422r 22871037
64. Ruttner F, Frey D, Fry F. Fundamentals of limnology. University Of Toronto Press.; Canada; 1953.
65. Lewis WM. Basis for the protection and management of tropical lakes. Lakes Reserv Res Manag. 2000;5: 35–48. doi: 10.1046/j.1440-1770.2000.00091.x
66. Kunz MJ, Anselmetti FS, Wüest A, Wehrli B, Vollenweider A, Thüring S, et al. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res. 2011;116: G03003. doi: 10.1029/2010JG001538
67. Zuijdgeest A, Wehrli B. Carbon and nutrient fluxes from floodplains and reservoirs in the Zambezi basin. Chem Geol. 2017;467: 1–11. doi: 10.1016/j.chemgeo.2017.07.025
68. Lewis WM. Biogeochemistry of tropical lakes. SIL Proceedings, 1922–2010. 2010;30: 1595–1603. doi: 10.1080/03680770.2009.11902383
69. Macklin PA, Suryaputra IGNA, Maher DT, Santos IR. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia). PLoS One. 2018;13: e0198678. doi: 10.1371/journal.pone.0198678 29889896
70. Cohen AS, Gergurich EL, Kraemer BM, McGlue MM, McIntyre PB, Russell JM, et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc Natl Acad Sci. 2016;113: 9563–9568. doi: 10.1073/pnas.1603237113 27503877
71. Woolway RI, Merchant CJ. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci. 2019; 1. doi: 10.1038/s41561-019-0322-x
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy