Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria
Autoři:
Catherine Cesa-Luna aff001; Jesús Muñoz-Rojas aff001; Gloria Saab-Rincon aff002; Antonino Baez aff001; Yolanda Elizabeth Morales-García aff001; Víctor Rivelino Juárez-González aff004; Verónica Quintero-Hernández aff001
Působiště autorů:
Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, P
aff001; Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
aff002; Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Puebla, México
aff003; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
aff004; CONACYT-ESMG, LEMM, CICM, IC, BUAP, Puebla, Puebla, México
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222438
Souhrn
Scorpion venom peptides represent a novel source of antimicrobial peptides (AMPs) with broad-spectrum activity. In this study, we determined the minimum bactericidal concentration (MBC) of three scorpion AMPs, Uy234, Uy17, and Uy192, which are found in the venomous glands of the Urodacus yaschenkoi scorpion, against the clinical isolates of multidrug-resistant (MDR) bacteria. In addition, we tested the activity of a consensus AMP designed in our laboratory based on some previously reported IsCT-type (cytotoxic linear peptide) AMPs with the aim of obtaining higher antimicrobial activity. All peptides tested showed high antimicrobial activity against MDR clinical isolates, with the highest activity against β-hemolytic Streptococcus strains. The hemolytic activity was determined against human red blood cells and was significantly lower than that of previously reported AMPs. The α-helical structure of the four AMPs was confirmed by circular dichroism (CD). These results suggest that the four peptides can be valuable tools for the design and development of AMPs for use in the inhibition of MDR pathogenic bacteria. A clear index of synergism and additivity was found for the combination of QnCs-BUAP + Uy234, which makes these peptides the most promising candidates against pathogenic bacteria.
Klíčová slova:
Antimicrobials – Cell membranes – Gram negative bacteria – Pneumococcus – Streptococcus – Venoms – Scorpions – Burkholderia cepacia complex
Zdroje
1. Quintero-Hernández V, Cesa-Luna C, Muñoz-Rojas J. Péptidos antimicrobianos de alacrán. Alianzas y Tendencias. 2017;2: 10–16.
2. Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: A review. Peptides. Elsevier Inc.; 2014;51: 35–45. doi: 10.1016/j.peptides.2013.10.021 24184590
3. Zeng X-C, Corzo G, Hahin R. Scorpion venom peptides without disulfide bridges. IUBMB Life. 2005;57: 13–21. doi: 10.1080/15216540500058899 16036557
4. Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol. Elsevier Inc.; 2017;134: 127–138. doi: 10.1016/j.bcp.2017.03.005 28288817
5. Pedron CN, Araújo I, da Silva Junior PI, Dias da Silva F, Torres MDT, Oliveira Junior VX. Repurposing the scorpion venom peptide VmCT1 into an active peptide against Gram-negative ESKAPE pathogens. Bioorg Chem. 2019; doi: 10.1016/j.bioorg.2019.103038 31212183
6. Travkova OG, Moehwald H, Brezesinski G. The interaction of antimicrobial peptides with membranes. Advances in Colloid and Interface Science. 2017. doi: 10.1016/j.cis.2017.06.001 28606715
7. Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: Versatile biological properties. Int J Pept. 2013; doi: 10.1155/2013/675391 23935642
8. Gao B, Dalziel J, Tanzi S, Zhu S. Meucin-49, a multifunctional scorpion venom peptide with bactericidal synergy with neurotoxins. Amino Acids. 2018; doi: 10.1007/s00726-018-2580-0 29770866
9. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014;88: 115–137. doi: 10.1016/j.toxicon.2014.06.006 24951876
10. Conde R, Zamudio FZ, Rodríguez MH, Possani LD. Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett. 2000;471: 165–168. doi: 10.1016/s0014-5793(00)01384-3 10767415
11. Torres-Larios A, Gurrola GB, Zamudio FZ, Possani LD. Hadrurin, A new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem. 2000;267: 5023–5031. doi: 10.1046/j.1432-1327.2000.01556.x 10931184
12. Corzo G, Escoubas P, Villegas E, Barnham KJ, He W, Norton RS, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J. 2001;359: 35. doi: 10.1042/0264-6021:3590035 11563967
13. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, et al. Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem. 2002;269: 4799–4810. doi: 10.1046/j.1432-1033.2002.03177.x 12354111
14. Nie Y, Zeng XC, Yang Y, Luo F, Luo X, Wu S, et al. A novel class of antimicrobial peptides from the scorpion Heterometrus spinifer. Peptides. 2012;38: 389–394. doi: 10.1016/j.peptides.2012.09.012 23000095
15. Wu S, Nie Y, Zeng XC, Cao H, Zhang L, Zhou L, et al. Genomic and functional characterization of three new venom peptides from the scorpion Heterometrus spinifer. Peptides. 2014; doi: 10.1016/j.peptides.2013.12.012 24389272
16. Dai L, Yasuda A, Naoki H, Corzo G, Andriantsiferana M, Nakajima T. IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. Biochem Biophys Res Commun. 2001;286: 820–825. doi: 10.1006/bbrc.2001.5472 11520071
17. Ramírez-Carreto S, Quintero-Hernández V, Jiménez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. Elsevier Inc.; 2012;34: 290–295. doi: 10.1016/j.peptides.2012.02.002 22342498
18. Antimicrobial M. Z. peptides of multicellular organisms. Nature. 2002; doi: 10.1145/122514.122517
19. Pouny Y, Shai Y. Interaction of D-Amino Acid Incorporated Analogues of Pardaxin with Membranes. Biochemistry. 1992; doi: 10.1021/bi00154a022 1390731
20. Baumann G, Mueller P. A molecular model of membrane excitability. J Supramol Cell Biochem. 1974; doi: 10.1002/jss.400020504 4461846
21. Dai L, Corzo G, Naoki H, Andriantsiferana M, Nakajima T. Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. Biochem Biophys Res Commun. 2002;293: 1514–1522. doi: 10.1016/S0006-291X(02)00423-0 12054688
22. Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW. Membrane pores induced by magainin. Biochemistry. 1996; doi: 10.1021/bi9620621 8901513
23. Cao W, Zhou Y, Ma Y, Luo Q, Wei D. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli. Protein Expr Purif. 2005; doi: 10.1016/j.pep.2004.12.007 15766883
24. Dennison SR, Harris F, Bhatt T, Singh J, Phoenix DA. The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Biochem. 2009; doi: 10.1007/s11010-009-0172-8 19513817
25. Dennison S R., Morton L H.G., Phoenix D A. Effect of Amidation on the Antimicrobial Peptide Aurein 2.5 from Australian Southern Bell Frogs. Protein Pept Lett. 2012; doi: 10.2174/092986612800494110 22519529
26. Luna-Ramírez K, Quintero-Hernández V, Juárez-González VR, Possani LD. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS One. 2015;10: e0127883. doi: 10.1371/journal.pone.0127883 26020943
27. Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CVF, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon. Elsevier Ltd; 2013;63: 44–54. doi: 10.1016/j.toxicon.2012.11.017 23182832
28. Luna-Ramirez K, Tonk M, Rahnamaeian M, Vilcinskas A. Bioactivity of natural and engineered antimicrobial peptides from venom of the scorpions urodacus yaschenkoi and U. Manicatus. Toxins (Basel). 2017;9. doi: 10.3390/toxins9010022 28067810
29. Castro-González R, Martínez-Aguilar L, Ramírez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J. High diversity of culturable Burkholderia species associated with sugarcane High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil. 2011; 155–169. doi: 10.1007/s11104-011-0768-0
30. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014;88: 115–137. doi: 10.1016/j.toxicon.2014.06.006 24951876
31. Li Z, Xu X, Meng L, Zhang Q, Cao L, Li W, et al. Hp1404, a new antimicrobial peptide from the scorpion Heterometrus petersii. PLoS One. 2014;9. doi: 10.1371/journal.pone.0097539 24826994
32. Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. 2018;11: 835–847. doi: 10.2147/IDR.S166236 29910626
33. Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000; doi: 10.1006/abio.2000.4880 11112271
34. Whitmore L, Wallace BA. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 2004;32: 668–673. doi: 10.1093/nar/gkh371 15215473
35. Rossolini GM. Multidrug-Resistant and Extremely Drug-Resistant Bacteria: Are We Facing the End of the Antibiotic Era? J Siena Acad Sci. 2016;7. doi: 10.4081/jsas.2015.6409
36. Trentini MM, das Neves RC, Santos B de PO, DaSilva RA, de Souza ACB, Mortari MR, et al. Non-disulfide-bridge peptide 5.5 from the scorpion Hadrurus gertschi inhibits the growth of Mycobacterium abscessus subsp. massiliense. Front Microbiol. 2017;8: 1–11. doi: 10.3389/fmicb.2017.00001
37. Somay Doğan T, İğcİ N, Bİber A, Gerekçİ S, Hüsnügİl HH, İzbirak A, et al. Peptidomic characterization and bioactivity of Protoiurus kraepelini (Scorpiones: Iuridae) venom. Turkish J Biol. 2018;42: 1–9. doi: 10.3906/biy-1804-35 30983865
38. Parente AMS, Daniele-Silva A, Furtado AA, Melo MA, Lacerda AF, Queiroz M, et al. Analogs of the Scorpion Venom Peptide Stigmurin: Structural Assessment, Toxicity, and Increased Antimicrobial Activity. Toxins (Basel). 2018;10: 1–16. doi: 10.3390/toxins10040161 29670004
39. Almaaytah A, Farajallah A, Abualhaijaa A, Al-Balas Q. A3, a Scorpion Venom Derived Peptide Analogue with Potent Antimicrobial and Potential Antibiofilm Activity against Clinical Isolates of Multi-Drug Resistant Gram Positive Bacteria. Molecules. 2018;23: 1603. doi: 10.3390/molecules23071603 30004427
40. Marques-Neto LM, Trentini MM, das Neves RC, Resende DP, Procopio VO, da Costa AC, et al. Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against Mycobacterium massiliensis. Toxins (Basel). 2018; doi: 10.3390/toxins10060219 29848960
41. Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. Elsevier Ltd; 2015;93: 125–135. doi: 10.1016/j.toxicon.2014.11.233 25432067
42. Luna-Ramírez K, Sani MA, Silva-Sanchez J, Jiménez-Vargas JM, Reyna-Flores F, Winkel KD, et al. Membrane interactions and biological activity of antimicrobial peptides from Australian scorpion. Biochim Biophys Acta—Biomembr. Elsevier B.V.; 2014;1838: 2140–2148. doi: 10.1016/j.bbamem.2013.10.022 24200946
43. Fan Z, Cao L, He Y, Hu J, Di Z, Wu Y, et al. Ctriporin, a new anti-methicillin-resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrob Agents Chemother. 2011;55: 5220–5229. doi: 10.1128/AAC.00369-11 21876042
44. Corral-Lugo A, Morales-García YE, Pazos-Rojas LA, Ramírez-Valverde A, Débora Martínez-Contreras R, Muñoz-Rojas J. Cuantificación de bacterias cultivables mediante el método de Goteo en Placa por Sellado (o estampado) Masivo. Colomb Biotecnológica. 2012;
45. Ramírez-Carreto S, Jiménez-Vargas JM, Rivas-Santiago B, Corzo G, Possani LD, Becerril B, et al. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity. Peptides. Elsevier Inc.; 2015;73: 51–59. doi: 10.1016/j.peptides.2015.08.014 26352292
46. Hernández-Aponte CA, Silva-Sanchez J, Quintero-Hernández V, Rodríguez-Romero A, Balderas C, Possani LD, et al. Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon. Elsevier Ltd; 2011;57: 84–92. doi: 10.1016/j.toxicon.2010.10.008 20969885
47. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Front Microbiol. 2018;9: 1–14. doi: 10.3389/fmicb.2018.00001
48. Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, et al. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep. 2018;8. doi: 10.1038/s41598-018-19434-7 29379033
49. Almaaytah A, Ajingi Y, Abualhaijaa A, Tarazi S, Alshar’i N, Al-Balas Q. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides. Infect Drug Resist. 2017;10: 1–17. doi: 10.2147/IDR.S118877 28096686
50. Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017;41: 276–301. doi: 10.1093/femsre/fux010 28369412
51. Luna-Ramírez K, Quintero-Hernández V, Vargas-Jaimes L, Batista CVF, Winkel KD, Possani LD. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon. Elsevier Ltd; 2013;63: 44–54. doi: 10.1016/j.toxicon.2012.11.017 23182832
52. Ramírez-Carreto S, Quintero-Hernández V, Jiménez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. Elsevier Inc.; 2012;34: 290–295. doi: 10.1016/j.peptides.2012.02.002 22342498
53. de la Salud Bea R, Petraglia AF, Ascuitto MR, Buck QM. Antibacterial Activity and Toxicity of Analogs of Scorpion Venom IsCT Peptides. Antibiotics. 2017;6: 13. doi: 10.3390/antibiotics6030013 28657596
54. Estrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, Vásquez-Murrieta MS, Hirsch AM. To split or not to split: an opinion on dividing the genus Burkholderia. Annals of Microbiology. 2016. doi: 10.1007/s13213-015-1183-1
55. Walkenhorst WF, Sundrud JN, Laviolette JM. Additivity and synergy between an antimicrobial peptide and inhibitory ions. Biochim Biophys Acta—Biomembr. Elsevier B.V.; 2014; 2234–2242. doi: 10.1016/j.bbamem.2014.05.005 24841756
56. Guo X, Ma C, Du Q, Wei R, Wang L, Zhou M, et al. Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: Evaluation of their antimicrobial and anticancer activities. Biochimie. 2013; doi: 10.1016/j.biochi.2013.06.003 23770440
57. Cao L, Dai C, Li Z, Fan Z, Song Y, Wu Y, et al. Antibacterial activity and mechanism of a Scorpion venom peptide derivative in vitro and in vivo. PLoS One. 2012;7. doi: 10.1371/journal.pone.0040135 22792229
58. Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res. 2012;51: 149–177. doi: 10.1016/j.plipres.2011.12.005 22245454
59. Epand RM, Epand RF. Domains in bacterial membranes and the action of antimicrobial agents. Mol Biosyst. 2009;5: 580–587. doi: 10.1039/b900278m 19462015
60. Strömstedt AAA, Ringstad L, Schmidtchen A, Malmsten M. Interaction between amphiphilic peptides and phospholipid membranes. Current Opinion in Colloid and Interface Science. 2010. doi: 10.1016/j.cocis.2009.06.002
61. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in Biotechnology. 2011. doi: 10.1016/j.tibtech.2011.05.001 21680034
62. Mura M, Wang J, Zhou Y, Pinna M, Zvelindovsky A V., Dennison SR, et al. The effect of amidation on the behaviour of antimicrobial peptides. European Biophysics Journal. 2016. doi: 10.1007/s00249-015-1094-x 26745958
63. Lee K, Shin SY, Kim K, Lim SS, Hahm KS, Kim Y. Antibiotic activity and structural analysis of the scorpion-derived antimicrobial peptide IsCT and its analogs. Biochem Biophys Res Commun. 2004;323: 712–719. doi: 10.1016/j.bbrc.2004.08.144 15369808
64. Sforça ML, Oyama S, Canduri F, Lorenzi CCB, Pertinhez TA, Konno K, et al. How C-Terminal Carboxyamidation Alters the Biological Activity of Peptides from the Venom of the Eumenine Solitary Wasp. Biochemistry. 2004; doi: 10.1021/bi0360915 15134435
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy