Propofol-based total intravenous anesthesia did not improve survival compared to desflurane anesthesia in breast cancer surgery
Autoři:
Yi-Hsuan Huang aff001; Meei-Shyuan Lee aff002; Yu-Sheng Lou aff002; Hou-Chuan Lai aff001; Jyh-Cherng Yu aff003; Chueng-He Lu aff001; Chih-Shung Wong aff004; Zhi-Fu Wu aff001
Působiště autorů:
Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China
aff001; School of Public Health, National Defense Medical Center, Taipei, Taiwan, Republic of China
aff002; Division of General Surgery, Department of Surgery, Tri-Services General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
aff003; Division of Anesthesiology, Cathay General Hospital, Taipei, Taiwan, Republic of China
aff004; Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan, Republic of China
aff005
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224728
Souhrn
Background
Breast cancer is the most common cancer in women and several perioperative factors may account for tumor recurrence and metastasis. The anesthetic agents employed during cancer surgery might play a crucial role in cancer cell survival and patient outcomes. We conducted a retrospective cohort study to investigate the relationship between the type of anesthesia and overall survival in patients who underwent breast cancer surgery performed by one experienced surgeon.
Methods
All patients who underwent breast cancer surgery by an experienced surgeon between January 2006 and December 2010 were included in this study. Patients were separated into two groups according to the use of desflurane or propofol anesthesia during surgery. Locoregional recurrence and overall survival rates were assessed for the two groups (desflurane or propofol anesthesia). Univariable and multivariable Cox regression models and propensity score matching analyses were used to compare the hazard ratios for death and adjust for potential confounders (age, body mass index, American Society of Anesthesiologists physical status classification, TNM stage, neoadjuvant chemotherapy, Charlson Comorbidity Index, anesthesiologists, and functional status).
Results
Of the 976 breast cancer patients, 632 patients underwent breast cancer surgery with desflurane anesthesia, while 344 received propofol anesthesia. After propensity scoring, 592 patients remained in the desflurane group and 296 patients in the propofol group. The mortality rate was similar in the desflurane (38 deaths, 4%) and propofol (22 deaths, 4%; p = 0.812) groups in 5-year follow-up. The crude hazard ratio (HR) for all patients was 1.13 (95% confidence interval [CI] 0.67–1.92, p = 0.646). No significant difference in the locoregional recurrence or overall 5-year survival rates were found after breast surgery using desflurane or propofol anesthesia (p = 0.454). Propensity score-matched analyses demonstrated similar outcomes in both groups. Patients who received propofol anesthesia had a higher mortality rate than those who received desflurane anesthesia in the matched groups (7% vs 6%, respectively) without significant difference (p = 0.561). In the propensity score-matched analyses, univariable analysis showed an insignificant finding (HR = 1.23, 95% CI 0.72–2.11, p = 0.449). After adjustment for the time since the earliest included patient, the HR remained insignificant (HR = 1.23, 95% CI 0.70–2.16, p = 0.475).
Conclusion
In our non-randomized retrospective analysis, neither propofol nor desflurane anesthesia for breast cancer surgery by an experienced surgeon can affect patient prognosis and survival. The influence of propofol anesthesia on breast cancer outcome requires further investigation.
Klíčová slova:
Anesthesia – Anesthetics – Breast cancer – Death rates – NSAIDs – Surgeons – Surgical and invasive medical procedures – Surgical oncology
Zdroje
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86. doi: 10.1002/ijc.29210 25220842
2. Hashim D, Boffetta P, La Vecchia C, Rota M, Bertuccio P, Malvezzi M, et al. The global decrease in cancer mortality: trends and disparities. Ann Oncol. 2016;27(5):926–33. doi: 10.1093/annonc/mdw027 26802157
3. Heaney A, Buggy DJ. Can anaesthetic and analgesic techniques affect cancer recurrence or metastasis? Br J Anaesth. 2012;109 Suppl 1:i17–i28.
4. Li R, Liu H, Dilger JP, Lin J. Effect of Propofol on breast Cancer cell, the immune system, and patient outcome. BMC Anesthesiol. 2018;18(1):77. doi: 10.1186/s12871-018-0543-3 29945542
5. Shapiro J, Jersky J, Katzav S, Feldman M, Segal S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest. 1981;68(3):678–85. doi: 10.1172/JCI110303 7276167
6. Benzonana LL, Perry NJ, Watts HR, Yang B, Perry IA, Coombes C, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605. doi: 10.1097/ALN.0b013e31829e47fd 23774231
7. Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130(6):1237–50. doi: 10.1002/ijc.26448 21935924
8. Li Q, Zhang L, Han Y, Jiang Z, Wang Q. Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother. 2012;66(1):52–6. doi: 10.1016/j.biopha.2011.10.006 22264881
9. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97(5):1331–9. doi: 10.1213/01.ane.0000082995.44040.07 14570648
10. Kushida A, Inada T, Shingu K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol. 2007;29(3–4):477–86. doi: 10.1080/08923970701675085 18075859
11. Jaura AI, Flood G, Gallagher HC, Buggy DJ. Differential effects of serum from patients administered distinct anaesthetic techniques on apoptosis in breast cancer cells in vitro: a pilot study. Br J Anaesth. 2014;113 Suppl 1:i63–7.
12. Lee JH, Kang SH, Kim Y, Kim HA, Kim BS. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Korean J Anesthesiol. 2016;69(2):126–32. doi: 10.4097/kjae.2016.69.2.126 27066202
13. Kim MH, Kim DW, Kim JH, Lee KY, Park S, Yoo YC. Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget. 2017;8(52):90477–87. doi: 10.18632/oncotarget.21014 29163846
14. Yoo S, Lee HB, Han W, Noh DY, Park SK, Kim WH, et al. Total intravenous anesthesia versus inhalation anesthesia for breast cancer surgery: a retrospective cohort study. Anesthesiology. 2019;130(1):31–40. doi: 10.1097/ALN.0000000000002491 30376457
15. Chen CS, Liu TC, Lin HC, Lien YC. Does high surgeon and hospital surgical volume raise the five-year survival rate for breast cancer? A population-based study. Breast Cancer Res Treat. 2008;110(2):349–56. doi: 10.1007/s10549-007-9715-4 17874183
16. Lai HC, Chan SM, Lu CH, Wong CS, Cherng CH, Wu ZF. Planning for operating room efficiency and faster anesthesia wake-up time in open major upper abdominal surgery. Medicine (Baltimore). 2017;96(7):e6148.
17. Liu TC, Lai HC, Lu CH, Huang YS, Hung NK, Cherng CH, et al. Analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in functional endoscopic sinus surgery. Medicine (Baltimore). 2018;97(5):e9805.
18. Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79. doi: 10.1097/ALN.0000000000000936 26556730
19. Heinze G, Juni P. An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J. 2011;32(14):1704–8. doi: 10.1093/eurheartj/ehr031 21362706
20. Benedetto U, Head SJ, Angelini GD, Blackstone EH. Statistical primer: propensity score matching and its alternatives. Eur J Cardiothorac Surg. 2018;53(6):1112–7. doi: 10.1093/ejcts/ezy167 29684154
21. Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L. The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci. 2014;119(3):251–61. doi: 10.3109/03009734.2014.922649 24857018
22. Soltanizadeh S, Degett TH, Gogenur I. Outcomes of cancer surgery after inhalational and intravenous anesthesia: A systematic review. J Clin Anesth. 2017;42:19–25. doi: 10.1016/j.jclinane.2017.08.001 28797751
23. Wu ZF, Lee MS, Wong CS, Lu CH, Huang YS, Lin KT, et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology. 2018;129(5):932–941. doi: 10.1097/ALN.0000000000002357 30028726
24. Woo JH, Baik HJ, Kim CH, Chung RK, Kim DY, Lee GY, et al. Effect of propofol and desflurane on immune cell populations in breast cancer patients: a randomized trial. J Korean Med Sci. 2015;30(10):1503–8. doi: 10.3346/jkms.2015.30.10.1503 26425050
25. Ecimovic P, McHugh B, Murray D, Doran P, Buggy DJ. Effects of sevoflurane on breast cancer cell function in vitro. Anticancer Res. 2013;33(10):4255–60. 24122989
26. Markovic SN, Knight PR, Murasko DM. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane. Anesthesiology. 1993;78(4):700–6. doi: 10.1097/00000542-199304000-00013 8466070
27. Aarts L, van der Hee R, Dekker I, de Jong J, Langemeijer H, Bast A. The widely used anesthetic agent propofol can replace alpha-tocopherol as an antioxidant. FEBS Lett. 1995;357(1):83–5. doi: 10.1016/0014-5793(94)01337-z 8001686
28. Welden B, Gates G, Mallari R, Garrett N. Effects of anesthetics and analgesics on natural killer cell activity. AANA J. 2009;77(4):287–92. 19731847
29. Huang H, Benzonana LL, Zhao H, Watts HR, Perry NJ, Bevan C, et al. Prostate cancer cell malignancy via modulation of HIF-1alpha pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111(7):1338–49. doi: 10.1038/bjc.2014.426 25072260
30. Beck-Schimmer B, Breitenstein S, Urech S, De Conno E, Wittlinger M, Puhan M, et al. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann Surg. 2008;248(6):909–18. doi: 10.1097/SLA.0b013e31818f3dda 19092335
31. Hooijmans CR, Geessink FJ, Ritskes-Hoitinga M, Scheffer GJ. A systematic review of the modifying effect of anaesthetic drugs on metastasis in animal models for cancer. PLoS One. 2016;11(5):e0156152. doi: 10.1371/journal.pone.0156152 27227779
32. Yu B, Gao W, Zhou H, Miao X, Chang Y, Wang L, et al. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark. 2018;21(3):513–9. doi: 10.3233/CBM-170234 29103019
33. Song J, Shen Y, Zhang J, Lian Q. Mini profile of potential anticancer properties of propofol. PLoS One. 2014;9(12):e114440. doi: 10.1371/journal.pone.0114440 25502773
34. Meng C, Song L, Wang J, Li D, Liu Y, Cui X. Propofol induces proliferation partially via downregulation of p53 protein and promotes migration via activation of the Nrf2 pathway in human breast cancer cell line MDA-MB-231. Oncol Rep. 2017;37(2):841–8. doi: 10.3892/or.2016.5332 28035403
35. van der Hage JA, van de Velde CJ, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol. 2001;19(22):4224–37. doi: 10.1200/JCO.2001.19.22.4224 11709566
36. Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 2008;26(5):778–85. doi: 10.1200/JCO.2007.15.0235 18258986
37. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19(1):27–39. doi: 10.1016/S1470-2045(17)30777-5 29242041
38. Chen CH, Lo YF, Tsai HP, Shen SC, Chao TC, Chen MF, et al. Low body mass index is an independent risk factor of locoregional recurrence in women with breast cancer undergoing breast conserving therapy. Chang Gung Med J. 2009;32(5):553–62. 19840513
39. Yu X, Zhou S, Wang J, Zhang Q, Hou J, Zhu L, et al. Hormone replacement therapy and breast cancer survival: a systematic review and meta-analysis of observational studies. Breast Cancer. 2017;24(5):643–57. doi: 10.1007/s12282-017-0789-5 28601917
40. Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer Res. 2017;77(7):1548–52. doi: 10.1158/0008-5472.CAN-16-1536 28330928
41. Coffey JC, Wang JH, Smith MJ, Bouchier-Hayes D, Cotter TG, Redmond HP. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 2003;4(12):760–8. doi: 10.1016/s1470-2045(03)01282-8 14662433
42. Michelson S, Leith JT. Dormancy, regression, and recurrence: towards a unifying theory of tumor growth control. J Theor Biol. 1994;169(4):327–38. doi: 10.1006/jtbi.1994.1155 7967626
43. Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg. 2000;232(1):58–65. doi: 10.1097/00000658-200007000-00009 10862196
44. Melamed R, Rosenne E, Shakhar K, Schwartz Y, Abudarham N, Ben-Eliyahu S. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun. 2005;19(2):114–26. doi: 10.1016/j.bbi.2004.07.004 15664784
45. Goldfarb Y, Ben-Eliyahu S. Surgery as a risk factor for breast cancer recurrence and metastasis: mediating mechanisms and clinical prophylactic approaches. Breast Dis. 2006;26:99–114. 17473369
46. Benish M, Bartal I, Goldfarb Y, Levi B, Avraham R, Raz A, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–52. doi: 10.1245/s10434-008-9890-5 18398660
47. Oh CS, Lee J, Yoon TG, Seo EH, Park HJ, Piao L, et al. Effect of equipotent doses of propofol versus sevoflurane anesthesia on regulatory T cells after breast cancer surgery. Anesthesiology. 2018; 129(5):921–931. doi: 10.1097/ALN.0000000000002382 30074934
48. Sainsbury R, Haward B, Rider L, Johnston C, Round C. Influence of clinician workload and patterns of treatment on survival from breast cancer. Lancet. 1995;345(8960):1265–70. doi: 10.1016/s0140-6736(95)90924-9 7746056
49. Stefoski Mikeljevic J, Haward RA, Johnston C, Sainsbury R, Forman D. Surgeon workload and survival from breast cancer. Br J Cancer. 2003;89(3):487–91. doi: 10.1038/sj.bjc.6601148 12888817
50. Kingsmore D, Hole D, Gillis C. Why does specialist treatment of breast cancer improve survival? The role of surgical management. Br J Cancer. 2004;90(10):1920–5. doi: 10.1038/sj.bjc.6601846 15138472
51. Skinner KA, Helsper JT, Deapen D, Ye W, Sposto R. Breast cancer: do specialists make a difference? Ann Surg Oncol. 2003;10(6):606–15. doi: 10.1245/aso.2003.06.017 12839844
52. Chang HT, Shi HY, Wang BW, Yeh SJ. Breast cancer incidence and predictors of surgical outcome: a nationwide longitudinal study in Taiwan. Clin Oncol (R Coll Radiol). 2017;29(6):362–9.
53. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387 28055103
54. Jaeger MT, Siemens DR, Wei X, Peng P, Booth CM. Association between anesthesiology volumes and early and late outcomes after cystectomy for bladder cancer: a population-based study. Anesth Analg. 2017;125(1):147–55. doi: 10.1213/ANE.0000000000001781 28207595
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy