Effects of artificially introduced Enterococcus faecalis strains in experimental necrotizing enterocolitis
Autoři:
Patrick T. Delaplain aff001; Brandon A. Bell aff001; Jin Wang aff001; Mubina Isani aff001; Emily Zhang aff003; Christopher P. Gayer aff001; Anatoly V. Grishin aff001; Henri R. Ford aff001
Působiště autorů:
Division of Pediatric Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
aff001; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
aff002; Shady Side Academy, Pittsburgh, PA, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(11)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0216762
Souhrn
Enterococcus faecalis is a ubiquitous intestinal symbiont and common early colonizer of the neonatal gut. Although colonization with E. faecalis has been previously associated with decreased pathology of necrotizing enterocolitis (NEC), these bacteria have been also implicated as opportunistic pathogens. Here we characterized 21 strains of E. faecalis, naturally occurring in 4-day-old rats, for potentially pathogenic properties and ability to colonize the neonatal gut. The strains differed in hemolysis, gelatin liquefaction, antibiotic resistance, biofilm formation, and ability to activate the pro-inflammatory transcription factor NF-κB in cultured enterocytes. Only 3 strains, BB70, 224, and BB24 appreciably colonized the neonatal intestine on day 4 after artificial introduction with the first feeding. The best colonizer, strain BB70, effectively displaced E. faecalis of maternal origin. Whereas BB70 and BB24 significantly increased NEC pathology, strain 224 significantly protected from NEC. Our results show that different strains of E. faecalis may be pathogenic or protective in experimental NEC.
Klíčová slova:
Bacterial biofilms – Bacterial pathogens – Biofilms – Enterococcus – Enterococcus faecalis – Gastrointestinal tract – Opportunistic pathogens – Gelatin media
Zdroje
1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. Jama. 2015;314(10):1039–51. Epub 2015/09/09. doi: 10.1001/jama.2015.10244 26348753; PubMed Central PMCID: PMC4787615.
2. Nino DF, Sodhi CP, Hackam DJ. Necrotizing enterocolitis: new insights into pathogenesis and mechanisms. Nat Rev Gastroenterol Hepatol. 2016;13(10):590–600. Epub 2016/08/19. doi: 10.1038/nrgastro.2016.119 27534694; PubMed Central PMCID: PMC5124124.
3. Grishin A, Bowling J, Bell B, Wang J, Ford HR. Roles of nitric oxide and intestinal microbiota in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg. 2016;51(1):13–7. Epub 2015/11/19. doi: 10.1016/j.jpedsurg.2015.10.006 26577908; PubMed Central PMCID: PMC4894644.
4. Grishin A, Papillon S, Bell B, Wang J, Ford HR. The role of the intestinal microbiota in the pathogenesis of necrotizing enterocolitis. Seminars in pediatric surgery. 2013;22(2):69–75. Epub 2013/04/25. doi: 10.1053/j.sempedsurg.2013.01.002 23611609; PubMed Central PMCID: PMC3647029.
5. Schonherr-Hellec S, Klein GL, Delannoy J, Ferraris L, Roze JC, Butel MJ, et al. Clostridial Strain-Specific Characteristics Associated with Necrotizing Enterocolitis. Applied and environmental microbiology. 2018;84(7). Epub 2018/01/21. doi: 10.1128/aem.02428-17 29352082; PubMed Central PMCID: PMC5861827.
6. Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Camerini V, Grishin AV, et al. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. The Journal of infectious diseases. 2008;198(4):586–93. Epub 2008/07/01. doi: 10.1086/590186 18588483; PubMed Central PMCID: PMC2497445.
7. Liu Q, Mittal R, Emami CN, Iversen C, Ford HR, Prasadarao NV. Human isolates of Cronobacter sakazakii bind efficiently to intestinal epithelial cells in vitro to induce monolayer permeability and apoptosis. The Journal of surgical research. 2012;176(2):437–47. Epub 2012/01/10. doi: 10.1016/j.jss.2011.10.030 22221600; PubMed Central PMCID: PMC3323755.
8. Thomas DM, Bell B, Papillon S, Delaplain P, Lim J, Golden J, et al. Colonization with Escherichia coli EC 25 protects neonatal rats from necrotizing enterocolitis. PloS one. 2017;12(11):e0188211. Epub 2017/12/01. doi: 10.1371/journal.pone.0188211 29190745; PubMed Central PMCID: PMC5708813.
9. Blackwood BP, Yuan CY, Wood DR, Nicolas JD, Grothaus JS, Hunter CJ. Probiotic Lactobacillus Species Strengthen Intestinal Barrier Function and Tight Junction Integrity in Experimental Necrotizing Enterocolitis. Journal of probiotics & health. 2017;5(1). Epub 2017/06/24. doi: 10.4172/2329-8901.1000159 28638850; PubMed Central PMCID: PMC5475283.
10. Hoang TK, He B, Wang T, Tran DQ, Rhoads JM, Liu Y. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2. American journal of physiology Gastrointestinal and liver physiology. 2018;315(2):G231–g40. Epub 2018/04/13. doi: 10.1152/ajpgi.00084.2017 29648878; PubMed Central PMCID: PMC6139641.
11. Olson JK, Navarro JB, Allen JM, McCulloh CJ, Mashburn-Warren L, Wang Y, et al. An enhanced Lactobacillus reuteri biofilm formulation that increases protection against experimental necrotizing enterocolitis. American journal of physiology Gastrointestinal and liver physiology. 2018;315(3):G408–G19. Epub 2018/06/01. doi: 10.1152/ajpgi.00078.2018 29848024; PubMed Central PMCID: PMC6415713.
12. AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev. 2014;(4):CD005496. Epub 2014/04/12. doi: 10.1002/14651858.CD005496.pub4 24723255.
13. Athalye-Jape G, Rao S, Patole S. Effects of probiotics on experimental necrotizing enterocolitis: a systematic review and meta-analysis. Pediatric research. 2018;83(1–1):16–22. Epub 2017/09/28. doi: 10.1038/pr.2017.218 28949953.
14. Sawh SC, Deshpande S, Jansen S, Reynaert CJ, Jones PM. Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. PeerJ. 2016;4:e2429. Epub 2016/10/21. doi: 10.7717/peerj.2429 27761306; PubMed Central PMCID: PMC5068355.
15. Molinaro M, Aiazzi M, La Torre A, Cini E, Banfi R. [Lactobacillus Rhamnosus sepsis in a preterm infant associated with probiotic integrator use: a case report.]. Recenti Prog Med. 2016;107(9):485–6. Epub 2016/10/12. doi: 10.1701/2354.25230 27727257.
16. Pell LG, Loutet MG, Roth DE, Sherman PM. Arguments against routine administration of probiotics for NEC prevention. Current opinion in pediatrics. 2019;31(2):195–201. Epub 2019/01/10. doi: 10.1097/MOP.0000000000000730 30624281.
17. Dubin K, Pamer EG. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectr. 2014;5(6). Epub 2014/11/01. doi: 10.1128/microbiolspec.BAD-0014-2016 29125098; PubMed Central PMCID: PMC5691600.
18. Orrhage K, Nord CE. Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Suppl. 1999;88(430):47–57. Epub 1999/11/24. 10569223.
19. P OC, Giri R, Hoedt EC, McGuckin MA, Begun J, Morrison M. Enterococcus faecalis AHG0090 is a Genetically Tractable Bacterium and Produces a Secreted Peptidic Bioactive that Suppresses Nuclear Factor Kappa B Activation in Human Gut Epithelial Cells. Frontiers in immunology. 2018;9:790. Epub 2018/05/04. doi: 10.3389/fimmu.2018.00790 29720977; PubMed Central PMCID: PMC5915459.
20. Isani M, Bell BA, Delaplain PT, Bowling JD, Golden JM, Elizee M, et al. Lactobacillus murinus HF12 colonizes neonatal gut and protects rats from necrotizing enterocolitis. PloS one. 2018;13(6):e0196710. Epub 2018/06/23. doi: 10.1371/journal.pone.0196710 29933378; PubMed Central PMCID: PMC6014650.
21. Barnes AMT, Dale JL, Chen Y, Manias DA, Greenwood Quaintance KE, Karau MK, et al. Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence. 2017;8(3):282–96. Epub 2016/08/27. doi: 10.1080/21505594.2016.1208890 27562711; PubMed Central PMCID: PMC5411234.
22. Normann E, Fahlen A, Engstrand L, Lilja HE. Intestinal microbial profiles in extremely preterm infants with and without necrotizing enterocolitis. Acta paediatrica (Oslo, Norway: 1992). 2013;102(2):129–36. Epub 2012/10/23. doi: 10.1111/apa.12059 23082780.
23. Stewart CJ, Marrs EC, Magorrian S, Nelson A, Lanyon C, Perry JD, et al. The preterm gut microbiota: changes associated with necrotizing enterocolitis and infection. Acta paediatrica (Oslo, Norway: 1992). 2012;101(11):1121–7. Epub 2012/08/01. doi: 10.1111/j.1651-2227.2012.02801.x 22845166.
24. Tendolkar PM, Baghdayan AS, Shankar N. Pathogenic enterococci: new developments in the 21st century. Cellular and molecular life sciences: CMLS. 2003;60(12):2622–36. Epub 2003/12/20. doi: 10.1007/s00018-003-3138-0 14685687.
25. Papillon S, Castle SL, Gayer CP, Ford HR. Necrotizing enterocolitis: contemporary management and outcomes. Advances in pediatrics. 2013;60(1):263–79. Epub 2013/09/07. doi: 10.1016/j.yapd.2013.04.011 24007848.
26. Nadler EP, Dickinson E, Knisely A, Zhang XR, Boyle P, Beer-Stolz D, et al. Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. The Journal of surgical research. 2000;92(1):71–7. Epub 2000/06/23. doi: 10.1006/jsre.2000.5877 10864485.
27. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28(3):449–61. Epub 1998/06/19. doi: 10.1046/j.1365-2958.1998.00797.x 9632250.
28. Toledo-Arana A, Valle J, Solano C, Arrizubieta MJ, Cucarella C, Lamata M, et al. The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Applied and environmental microbiology. 2001;67(10):4538–45. Epub 2001/09/26. doi: 10.1128/AEM.67.10.4538-4545.2001 11571153; PubMed Central PMCID: PMC93200.
29. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9. Epub 2000/03/04. 10699673.
30. R Development Core Team. R: A language and environment for statisical computing. Vienna, Austria: R Foundation for Statistical Computing; 2010.
31. Anderson AC, Andisha H, Hellwig E, Jonas D, Vach K, Al-Ahmad A. Antibiotic Resistance Genes and Antibiotic Susceptibility of Oral Enterococcus faecalis Isolates Compared to Isolates from Hospitalized Patients and Food. Advances in experimental medicine and biology. 2018;1057:47–62. Epub 2017/06/12. doi: 10.1007/5584_2017_53 28601926.
32. Maharshak N, Huh EY, Paiboonrungruang C, Shanahan M, Thurlow L, Herzog J, et al. Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infection and immunity. 2015;83(7):2762–70. Epub 2015/04/29. doi: 10.1128/IAI.00425-15 25916983; PubMed Central PMCID: PMC4468563.
33. Chen PW, Tseng SY, Huang MS. Antibiotic Susceptibility of Commensal Bacteria from Human Milk. Current microbiology. 2016;72(2):113–9. Epub 2015/10/24. doi: 10.1007/s00284-015-0925-4 26494365.
34. Landete JM, Peiroten A, Medina M, Arques JL, Rodriguez-Minguez E. Virulence and Antibiotic Resistance of Enterococci Isolated from Healthy Breastfed Infants. Microbial drug resistance (Larchmont, NY). 2018;24(1):63–9. Epub 2017/07/15. doi: 10.1089/mdr.2016.0320 28708453.
35. He Q, Hou Q, Wang Y, Li J, Li W, Kwok LY, et al. Comparative genomic analysis of Enterococcus faecalis: insights into their environmental adaptations. BMC genomics. 2018;19(1):527. Epub 2018/07/13. doi: 10.1186/s12864-018-4887-3 29996769; PubMed Central PMCID: PMC6042284.
Článek vyšel v časopise
PLOS One
2019 Číslo 11
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- A daily diary study on maladaptive daydreaming, mind wandering, and sleep disturbances: Examining within-person and between-persons relations
- A 3’ UTR SNP rs885863, a cis-eQTL for the circadian gene VIPR2 and lincRNA 689, is associated with opioid addiction
- A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling
- Molecular validation of clinical Pantoea isolates identified by MALDI-TOF
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy