Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
Autoři:
Dan Jin aff001; Nguyen Tran aff001; Nagheme Thomas aff001; David D. Tran aff001
Působiště autorů:
Division of Neuro-Oncology, Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223555
Souhrn
Cyclin-dependent kinases 4 and 6 (CDK4/6) play critical roles in the G1 to S checkpoint of the cell cycle and have been shown to be overactive in several human cancers. Small-molecule inhibitors of CDK4/6 have demonstrated significant efficacy against many solid tumors. Since CDK4/6 inhibition is thought to induce cell cycle arrest at the G1/S checkpoint, much interest has been focused on combining CDK4/6 inhibitors with cytotoxic agents active against the S or M phase of the cell cycle to enhance therapeutic efficacy. However, it remains unclear how best to combine these two classes of drugs to avoid their potentially antagonistic effects. Here, we test various combinations of highly selective and potent CDK4/6 inhibitors with commonly used cytotoxic drugs in several cancer cell lines derived from lung, breast and brain cancers, for their cell-killing effects as compared to monotherapy. All combinations, either concurrent or sequential, failed to enhance cell-killing effects. Importantly, in certain schedules, especially pre-treatment with a CDK4/6 inhibitor, combining these drugs resulted in reduced cytotoxicity of cytotoxic agents. These findings urge cautions when combining these two classes of agents in clinical settings.
Klíčová slova:
Breast cancer – Cancer treatment – Cell cycle and cell division – Cell cycle inhibitors – Cytotoxicity – Drug therapy – Synthesis phase – Cytotoxicity assay
Zdroje
1. Suryadinata R, Sadowski M, Sarcevic B. Control of cell cycle progression by phosphorylation of cyclin-dependent kinase (CDK) substrates. Bioscience reports. 2010;30(4):243–55. doi: 10.1042/BSR20090171 20337599.
2. Barnum KJ, O'Connell MJ. Cell cycle regulation by checkpoints. Methods in molecular biology. 2014;1170:29–40. doi: 10.1007/978-1-4939-0888-2_2 24906307; PubMed Central PMCID: PMC4990352.
3. Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res. 2017;7(5):1016–36. 28560055; PubMed Central PMCID: PMC5446472.
4. Ravitz MJ, Wenner CE. Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-beta. Advances in cancer research. 1997;71:165–207. 9111866.
5. Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell. 1999;98(6):859–69. doi: 10.1016/s0092-8674(00)81519-6 10499802.
6. Weintraub SJ, Prater CA, Dean DC. Retinoblastoma protein switches the E2F site from positive to negative element. Nature. 1992;358(6383):259–61. doi: 10.1038/358259a0 1321348.
7. Lee HJ, Lee WK, Kang CW, Ku CR, Cho YH, Lee EJ. A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett. 2018;417:131–40. doi: 10.1016/j.canlet.2017.12.037 29306020.
8. Tao YF, Wang NN, Xu LX, Li ZH, Li XL, Xu YY, et al. Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells. Cancer Cell Int. 2017;17:35. doi: 10.1186/s12935-017-0405-y 28286417; PubMed Central PMCID: PMC5340031.
9. Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): Mechanism of Action and Clinical Impact of This Selective Cyclin-Dependent Kinase 4/6 Inhibitor in Various Solid Tumors. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017;23(13):3251–62. doi: 10.1158/1078-0432.CCR-16-3157 28351928.
10. de Gramont A, Herrera A, de Gramont A. Ribociclib for HR-Positive, Advanced Breast Cancer. The New England journal of medicine. 2017;376(3):288–9. doi: 10.1056/NEJMc1615255 28102649.
11. Kwapisz D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast cancer research and treatment. 2017;166(1):41–54. doi: 10.1007/s10549-017-4385-3 28741274.
12. Sonke GS, Hart LL, Campone M, Erdkamp F, Janni W, Verma S, et al. Ribociclib with letrozole vs letrozole alone in elderly patients with hormone receptor-positive, HER2-negative breast cancer in the randomized MONALEESA-2 trial. Breast cancer research and treatment. 2017. doi: 10.1007/s10549-017-4523-y 29058175.
13. Kim ES, Scott LJ. Palbociclib: A Review in HR-Positive, HER2-Negative, Advanced or Metastatic Breast Cancer. Targeted oncology. 2017;12(3):373–83. doi: 10.1007/s11523-017-0492-7 28488183.
14. Chen P, Lee NV, Hu W, Xu M, Ferre RA, Lam H, et al. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Molecular cancer therapeutics. 2016;15(10):2273–81. doi: 10.1158/1535-7163.MCT-16-0300 27496135.
15. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129–38. doi: 10.1016/j.ctrv.2016.03.002 27017286.
16. Sumi NJ, Kuenzi BM, Knezevic CE, Remsing Rix LL, Rix U. Chemoproteomics Reveals Novel Protein and Lipid Kinase Targets of Clinical CDK4/6 Inhibitors in Lung Cancer. ACS chemical biology. 2015;10(12):2680–6. doi: 10.1021/acschembio.5b00368 26390342; PubMed Central PMCID: PMC4684772.
17. de Groot AF, Kuijpers CJ, Kroep JR. CDK4/6 inhibition in early and metastatic breast cancer: A review. Cancer treatment reviews. 2017;60:130–8. doi: 10.1016/j.ctrv.2017.09.003 28961554.
18. Bortolozzi R, Mattiuzzo E, Trentin L, Accordi B, Basso G, Viola G. Ribociclib, a Cdk4/Cdk6 kinase inhibitor, enhances glucocorticoid sensitivity in B-acute lymphoblastic leukemia (B-All). Biochem Pharmacol. 2018. doi: 10.1016/j.bcp.2018.01.050 29408328.
19. Pikman Y, Alexe G, Roti G, Conway AS, Furman A, Lee ES, et al. Synergistic Drug Combinations with a CDK4/6 Inhibitor in T-cell Acute Lymphoblastic Leukemia. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017;23(4):1012–24. doi: 10.1158/1078-0432.CCR-15-2869 28151717; PubMed Central PMCID: PMC5432118.
20. McClendon AK, Dean JL, Rivadeneira DB, Yu JE, Reed CA, Gao E, et al. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle. 2012;11(14):2747–55. doi: 10.4161/cc.21127 22751436; PubMed Central PMCID: PMC3409014.
21. Roberts PJ, Bisi JE, Strum JC, Combest AJ, Darr DB, Usary JE, et al. Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst. 2012;104(6):476–87. doi: 10.1093/jnci/djs002 22302033; PubMed Central PMCID: PMC3309128.
22. Konecny GE, Winterhoff B, Kolarova T, Qi J, Manivong K, Dering J, et al. Expression of p16 and retinoblastoma determines response to CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 2011;17(6):1591–602. doi: 10.1158/1078-0432.CCR-10-2307 21278246.
23. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC, et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol. 1999;9(3):469–79. 10416987.
24. Carretero J, Obrador E, Esteve JM, Ortega A, Pellicer JA, Sempere FV, et al. Tumoricidal activity of endothelial cells. Inhibition of endothelial nitric oxide production abrogates tumor cytotoxicity induced by hepatic sinusoidal endothelium in response to B16 melanoma adhesion in vitro. J Biol Chem. 2001;276(28):25775–82. Epub 2001/04/19. doi: 10.1074/jbc.M101148200 11313348.
25. Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol. 2004;281:301–11. doi: 10.1385/1-59259-811-0:301 15220539.
26. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35. doi: 10.1016/S1470-2045(14)71159-3 25524798.
27. Finn RS, Martin M, Rugo HS, Jones S, Im SA, Gelmon K, et al. Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med. 2016;375(20):1925–36. doi: 10.1056/NEJMoa1607303 27959613.
28. Goetz MP, Toi M, Campone M, Sohn J, Paluch-Shimon S, Huober J, et al. MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer. J Clin Oncol. 2017;35(32):3638–46. doi: 10.1200/JCO.2017.75.6155 28968163.
29. Hortobagyi GN, Stemmer SM, Burris HA, Yap YS, Sonke GS, Paluch-Shimon S, et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med. 2016;375(18):1738–48. doi: 10.1056/NEJMoa1609709 27717303.
30. Dean JL, McClendon AK, Knudsen ES. Modification of the DNA damage response by therapeutic CDK4/6 inhibition. J Biol Chem. 2012;287(34):29075–87. Epub 2012/06/25. doi: 10.1074/jbc.M112.365494 22733811; PubMed Central PMCID: PMC3436568.
31. Iyengar M, O'Hayer P, Cole A, Sebastian T, Yang K, Coffman L, et al. CDK4/6 inhibition as maintenance and combination therapy for high grade serous ovarian cancer. Oncotarget. 2018;9(21):15658–72. doi: 10.18632/oncotarget.24585 29644000; PubMed Central PMCID: PMC5884655.
32. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. doi: 10.1056/NEJMoa043331 15758010.
33. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 1997;23(1):35–61. 9189180.
34. Zhang YD, Dai RY, Chen Z, Zhang YH, He XZ, Zhou J. Efficacy and safety of carmustine wafers in the treatment of glioblastoma multiforme: a systematic review. Turk Neurosurg. 2014;24(5):639–45. doi: 10.5137/1019-5149.JTN.8878-13.1 25269031.
35. Morabito A, Carillio G, Daniele G, Piccirillo MC, Montanino A, Costanzo R, et al. Treatment of small cell lung cancer. Crit Rev Oncol Hematol. 2014;91(3):257–70. doi: 10.1016/j.critrevonc.2014.03.003 24767978.
36. Perez EA, Hartmann LC. Paclitaxel and carboplatin for advanced breast cancer. Semin Oncol. 1996;23(5 Suppl 11):41–5. 8893899.
37. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Marcello J, Reardon DA, Quinn JA, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25(30):4722–9. doi: 10.1200/JCO.2007.12.2440 17947719.
38. Leonard A, Wolff JE. Etoposide improves survival in high-grade glioma: a meta-analysis. Anticancer Res. 2013;33(8):3307–15. 23898097.
39. Ramalingam S, Belani CP. Paclitaxel for non-small cell lung cancer. Expert Opin Pharmacother. 2004;5(8):1771–80. doi: 10.1517/14656566.5.8.1771 15264992.
40. Zhang XH, Cheng Y, Shin JY, Kim JO, Oh JE, Kang JH. A CDK4/6 inhibitor enhances cytotoxicity of paclitaxel in lung adenocarcinoma cells harboring mutant KRAS as well as wild-type KRAS. Cancer Biol Ther. 2013;14(7):597–605. doi: 10.4161/cbt.24592 23792647; PubMed Central PMCID: PMC3742489.
41. Achuthan S, Santhoshkumar TR, Prabhakar J, Nair SA, Pillai MR. Drug-induced senescence generates chemoresistant stemlike cells with low reactive oxygen species. J Biol Chem. 2011;286(43):37813–29. Epub 2011/09/01. doi: 10.1074/jbc.M110.200675 21878644; PubMed Central PMCID: PMC3199523.
42. Klein ME, Kovatcheva M, Davis LE, Tap WD, Koff A. CDK4/6 Inhibitors: The Mechanism of Action May Not Be as Simple as Once Thought. Cancer Cell. 2018;34(1):9–20. Epub 2018/05/08. doi: 10.1016/j.ccell.2018.03.023 29731395; PubMed Central PMCID: PMC6039233.
43. Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96–100. Epub 2017/12/21. doi: 10.1038/nature25167 29258294.
44. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D, et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(22):6173–82. Epub 2013/09/21. doi: 10.1158/1078-0432.CCR-13-1675 24045179; PubMed Central PMCID: PMC3844928.
45. Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos. 2018;46(5):567–80. Epub 2018/03/07. doi: 10.1124/dmd.118.080663 29514827; PubMed Central PMCID: PMC5896366.
46. Sorf A, Hofman J, Kučera R, Staud F, Ceckova M. Ribociclib shows potential for pharmacokinetic drug-drug interactions being a substrate of ABCB1 and potent inhibitor of ABCB1, ABCG2 and CYP450 isoforms in vitro. Biochem Pharmacol. 2018;154:10–7. Epub 2018/04/16. doi: 10.1016/j.bcp.2018.04.013 29673999.
47. Gupta P, Zhang YK, Zhang XY, Wang YJ, Lu KW, Hall T, et al. Voruciclib, a Potent CDK4/6 Inhibitor, Antagonizes ABCB1 and ABCG2-Mediated Multi-Drug Resistance in Cancer Cells. Cell Physiol Biochem. 2018;45(4):1515–28. Epub 2018/02/19. doi: 10.1159/000487578 29486476.
48. Herrera-Abreu MT, Palafox M, Asghar U, Rivas MA, Cutts RJ, Garcia-Murillas I, et al. Early Adaptation and Acquired Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive Breast Cancer. Cancer Res. 2016;76(8):2301–13. doi: 10.1158/0008-5472.CAN-15-0728 27020857; PubMed Central PMCID: PMC5426059.
49. Franco J, Witkiewicz AK, Knudsen ES. CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget. 2014;5(15):6512–25. doi: 10.18632/oncotarget.2270 25156567; PubMed Central PMCID: PMC4171647.
50. Yang C, Li Z, Bhatt T, Dickler M, Giri D, Scaltriti M, et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene. 2017;36(16):2255–64. doi: 10.1038/onc.2016.379 27748766; PubMed Central PMCID: PMC5393973.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy