Management factors affecting adrenal glucocorticoid activity of tourist camp elephants in Thailand and implications for elephant welfare
Autoři:
Pakkanut Bansiddhi aff001; Janine L. Brown aff001; Jaruwan Khonmee aff001; Treepradab Norkaew aff001; Korakot Nganvongpanit aff001; Veerasak Punyapornwithaya aff005; Taweepoke Angkawanish aff007; Chaleamchat Somgird aff001; Chatchote Thitaram aff001
Působiště autorů:
Center of Elephant and Wildlife Research, Chiang Mai University, Chiang Mai, Thailand
aff001; Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
aff002; Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, United States of America
aff003; Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
aff004; Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
aff005; Excellent Center of Veterinary Public Health, Chiang Mai University, Chiang Mai, Thailand
aff006; National Elephant Institute, Lampang, Thailand
aff007
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221537
Souhrn
Elephant camps are among the most popular destinations in Thailand for tourists from many countries. A wide range of management strategies are used by these camps, which can have varied impacts on health and welfare of elephants. The objectives of this study were to examine relationships between FGM (fecal glucocorticoid metabolite) concentrations and camp management factors (work routine, walking, restraint, rest area, foraging), and to other welfare indicators (stereotypic behaviors, body condition, foot health, and skin wounds). Data were obtained on 84 elephants (18 males and 66 females) from 15 elephant camps over a 1-year period. Elephants were examined every 3 months and assigned a body condition score, foot score, and wound score. Fecal samples were collected twice monthly for FGM analysis. Contrary to some beliefs, elephants in the observation only program where mahouts did not carry an ankus for protection had higher FGM concentrations compared to those at camps that offered riding with a saddle and shows. Elephants that were tethered in the forest at night had lower FGM concentrations compared to elephants that were kept in open areas inside the camps. There was an inverse relationship between FGM concentrations and occurrence of stereotypy, which was not anticipated. Thus, assessing adrenal activity via monitoring of FGM concentrations can provide important information on factors affecting the well-being of elephants. Results suggest that more naturalistic housing conditions and providing opportunities to exercise may be good for elephants under human care in Thailand, and that a no riding, no hook policy does not necessarily guarantee good welfare.
Klíčová slova:
Animal welfare – Behavior – Cortisol – Exercise – Forests – Metabolites – Walking – Elephants
Zdroje
1. Bansiddhi P, Brown JL, Thitaram C, Punyapornwithaya V, Nganvongpanit K. Elephant tourism in Thailand: A review of animal welfare practices and needs. J Appl Anim Welf Sci. 2019:1–14. doi: 10.1080/10888705.2019.1569522 30689409
2. Bansiddhi P, Brown JL, Thitaram C, Punyapornwithaya V, Somgird C, Edwards KL, et al. Changing trends in elephant camp management in northern Thailand and implications for welfare. PeerJ. 2018;6:e5996. doi: 10.7717/peerj.5996 30505635
3. Ralph CR, Tilbrook AJ. Invited review: The usefulness of measuring glucocorticoids for assessing animal welfare. J Anim Sci. 2016;94(2):457–70. doi: 10.2527/jas.2015-9645 27065116
4. Tilbrook AJ, Ralph CR. Hormones, stress and the welfare of animals. Anim Prod Sci. 2018;58(3):408–15.
5. Brown JL, Lehnhardt J. Serum and urinary hormones during pregnancy and the peri- and postpartum period in an Asian elephant (Elephas maximus). Zoo Biol. 1995;14(6):555–64.
6. Brown JL, Somerville M, Riddle HS, Keele M, Duer CK, Freeman EW. Comparative endocrinology of testicular, adrenal and thyroid function in captive Asian and African elephant bulls. Gen Comp Endocrinol. 2007;151(2):153–62. doi: 10.1016/j.ygcen.2007.01.006 17336304
7. Kajaysri J, Nokkaew W. Assessment of pregnancy status of Asian elephants (Elephas maximus) by measurement of progestagen and glucocorticoid and their metabolite concentrations in serum and feces, using enzyme immunoassay (EIA). J Vet Med Sci. 2014;76(3):363–8. doi: 10.1292/jvms.13-0103 24257195
8. Kumar V, Reddy VP, Kokkiligadda A, Shivaji S, Umapathy G. Non-invasive assessment of reproductive status and stress in captive Asian elephants in three south Indian zoos. Gen Comp Endocrinol. 2014;201:37–44. doi: 10.1016/j.ygcen.2014.03.024 24698789
9. Millspaugh JJ, Burke T, Dyk GV, Slotow R, Washburn BE, Woods RJ. Stress response of working African elephants to transportation and safari adventures. J Wildlife Manage. 2007;71(4):1257–60.
10. Menargues A, Urios V, Mauri M. Welfare assessment of captive Asian elephants (Elephas maximus) and Indian rhinoceros (Rhinoceros unicornis) using salivary cortisol measurement. Anim Welf. 2008;17:305–12.
11. Bryant JL, Wielebnowski NC. Environmental impact on activity level and fecal glucocorticoid metabolite concentration of African elephants and black rhinoceros at Brookfield zoo. Int J Avian Wildl Biol. 2018;3(2):94–100.
12. Dathe HH, Kuckelkorn B, Minnemann D. Salivary cortisol assessment for stress detection in the Asian elephant (Elephas maximus): A pilot study. Zoo Biol. 1992;11(4):285–9.
13. Fanson KV, Lynch M, Vogelnest L, Miller G, Keeley T. Response to long-distance relocation in Asian elephants (Elephas maximus): Monitoring adrenocortical activity via serum, urine, and feces. Eur J Wildlife Res. 2013;59:655–64.
14. Laws N, Ganswindt A, Heistermann M, Harris M, Harris S, Sherwin C. A case study: Fecal corticosteroid and behavior as indicators of welfare during relocation of an Asian elephant. J Appl Anim Welf Sci. 2007;10(4):349–58. doi: 10.1080/10888700701555600 17970634
15. Wong EP, Campos-Arceiz A, Saaban S, Othman N, Solana-Mena A, Wadey J. The elephant who finally crossed the road–Significant life events reflected in faecal hormone metabolites of a wild Asian elephant. Gajah. 2018;48:4–11.
16. Mumby HS, Mar KU, Hayward AD, Htut W, Htut-Aung Y, Lummaa V. Elephants born in the high stress season have faster reproductive ageing. Sci Rep-UK. 2015;5:13946.
17. Mumby HS, Mar KU, Thitaram C, Courtiol A, Towiboon P, Zaw Min-Oo, et al. Stress and body condition are associated with climate and demography in Asian elephants. Conserv Physiol. 2015;3:1–14.
18. Stead S, Meltzer D, Palme R. The measurement of glucocorticoid concentrations in the serum and faeces of captive African elephants (Loxodonta africana) after ACTH stimulation. J S Afri Vet Assoc. 2000;71:192–6.
19. Boyle SA, Roberts B, Pope BM, Blake MR, Leavelle SE, Marshall JJ, et al. Assessment of flooring renovations on African elephant (Loxodonta africana) behavior and glucocorticoid response. PLoS One. 2015;10(11):e0141009. doi: 10.1371/journal.pone.0141009 26535582
20. Millspaugh JJ, Washburn BE. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen Comp Endocrinol. 2004;138(3):189–99. doi: 10.1016/j.ygcen.2004.07.002 15364201
21. Touma C, Palme R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann NY Acad Sci. 2005;1046:54–74. doi: 10.1196/annals.1343.006 16055843
22. Mason GJ, Veasey JS. How should the psychological well-being of zoo elephants be objectively investigated? Zoo Biol. 2010;29:237–55. doi: 10.1002/zoo.20256 19514018
23. Greco BJ, Meehan CL, Heinsius JL, Mench JA. Why pace? The influence of social, housing, management, life history, and demographic characteristics on locomotor stereotypy in zoo elephants. Appl Anim Behav Sci. 2017;194:104–11.
24. Greco BJ, Meehan CL, Hogan JN, Leighty KA, Mellen J, Mason GJ, et al. The days and nights of zoo elephants: Using epidemiology to better understand stereotypic behavior of African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) in North American zoos. PLoS One. 2016;11(7):e0144276. doi: 10.1371/journal.pone.0144276 27416071
25. Mason GJ. Stereotypies: A critical review. Anim Behav. 1991;41(6):1015–37.
26. Chatkupt TT, Sollod AE, Sarobol S. Elephants in Thailand: Determinants of health and welfare in working populations. J Appl Anim Welf Sci. 1999;2(3):187–203. doi: 10.1207/s15327604jaws0203_2 16363921
27. Morfeld KA, Meehan CL, Hogan JN, Brown JL. Assessment of body condition in African (Loxodonta africana) and Asian (Elephas maximus) elephants in North American zoos and management practices associated with high body condition scores. PLoS One. 2016;11(7):e0155146. doi: 10.1371/journal.pone.0155146 27415629
28. Ramanathan A, Mallapur A. A visual health assessment of captive Asian elephants (Elephas maximus) housed in India. J Zoo Wildl Med. 2008;39(2):148–54. doi: 10.1638/2007-0008R1.1 18634204
29. Morfeld KA, Brown JL. Metabolic health assessment of zoo elephants: Management factors predicting leptin levels and the glucose-to-insulin ratio and their associations with health parameters. PLoS One. 2017;12(11):e0188701. doi: 10.1371/journal.pone.0188701 29186207
30. Morfeld KA, Brown JL. Ovarian acyclicity in zoo African elephants (Loxodonta africana) is associated with high body condition scores and elevated serum insulin and leptin. Reprod Fertil Dev. 2016;28(5):640–7. doi: 10.1071/RD14140 25375263
31. Norkaew T, Brown JL, Bansiddhi P, Somgird C, Thitaram C, Punyapornwithaya V, et al. Body condition and adrenal glucocorticoid activity affects metabolic marker and lipid profiles in captive female elephants in Thailand. PLoS One. 2018;13(10):e0204965. doi: 10.1371/journal.pone.0204965 30278087
32. Norkaew T, Brown JL, Bansiddhi P, Somgird C, Thitaram C, Punyapornwithaya V, et al. Influence of season, tourist activities and camp management on body condition, testicular and adrenal steroids, lipid profiles, and metabolic status in captive Asian elephant bulls in Thailand. PLoS One. 2019;14(3):e0210537. doi: 10.1371/journal.pone.0210537 30865634
33. Lewis KD, Shepherdson DJ, Owens TM, Keele M. A survey of elephant husbandry and foot health in North American Zoos. Zoo Biol. 2010;29:221–36. doi: 10.1002/zoo.20291 20014111
34. Miller MA, Hogan JN, Meehan CL. Housing and demographic risk factors impacting foot and musculoskeletal health in African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) in North American zoos. PLoS One. 2016;11:e0155223. doi: 10.1371/journal.pone.0155223 27415763
35. Bansiddhi P, Nganvongpanit K, Brown JL, Punyapornwithaya V, Pongsopawijit P, Thitaram C. Management factors affecting physical health and welfare of tourist camp elephants in Thailand. PeerJ. 2019;7:e6756. doi: 10.7717/peerj.6756 31086730
36. Brown JL. Comparative reproductive biology of elephants. Adv Exp Med Biol. 2014;753:135–69. doi: 10.1007/978-1-4939-0820-2_8 25091910
37. Harris M, Sherwin C, Harris S. The welfare, housing and husbandry of elephants in UK zoos. Defra: Defra WC05007; 2008.
38. Todd H. Comparing the foot and locomotory health of Asian elephants (Elephas maximus) of Northern Thailand to the UK and Ireland. Research Project Report. London: Royal Veterinary College; 2015.
39. Schein M, Rogers PN, Leppäniemi A, Rosin D. The wound, the wound … In: Schein M, Rogers PN, Leppäniemi A, Rosin D, editors. Schein's common sense prevention and management of surgical complications: For surgeons, residents, lawyers, and even those who never have any complications. Shropshire: tfm Publishing Limited; 2013.
40. Brown JL, Wasser SK, Wildt DE, Graham LH. Comparative aspects of steroid hormone metabolism and ovarian activity in felids, measured noninvasively in feces. Biol Reprod. 1994;51(4):776–86. doi: 10.1095/biolreprod51.4.776 7819459
41. Watson R, Munro C, Edwards KL, Norton V, Brown JL, Walker SL. Development of a versatile enzyme immunoassay for non-invasive assessment of glucocorticoid metabolites in a diversity of taxonomic species. Gen Comp Endocrinol. 2013;186:16–24. doi: 10.1016/j.ygcen.2013.02.001 23462197
42. R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2018. Available from: http://www.R-project.org/.
43. Højsgaard S. Package “geepack”. 2016. Available from: https://cran.r-project.org/web/packages/geepack/geepack.pdf.
44. Pan W. Akaike's information criterion in generalized estimating equations. Biometrics. 2001;57(1):120–5. 11252586
45. Barton K. Package “MuMIn”. 2018. Available from: https://cran.rproject.org/web/packages/MuMIn/MuMIn.pdf.
46. Schober P, Boer C, Schwarte LA. Correlation coefficients: Appropriate use and interpretation. Anesth & Analg. 2018;126(5).
47. Schmidt-Burbach J, Ronfot D, Srisangiam R. Asian elephant (Elephas maximus), pigtailed Macaque (Macaca nemestrina) and tiger (Panthera tigris) populations at tourism venues in Thailand and aspects of their welfare. PLoS One. 2015;10(9):e0139092. doi: 10.1371/journal.pone.0139092 26407173
48. Burn C. Bestial boredom: A biological perspective on animal boredom and suggestions for its scientific investigation. Anim Behav. 2017;130:141–51.
49. Payne E, Bennett PC, McGreevy PD. Current perspectives on attachment and bonding in the dog-human dyad. Psychol Res Behav Manag. 2015;8:71–9. doi: 10.2147/PRBM.S74972 25750549
50. Carlstead K, Paris S, Brown JL. Good keeper-elephant relationships in North American zoos are mutually beneficial to welfare. Appl Anim Behav Sci. 2019;211:103–11
51. Rossman ZT, Padfield C, Young D, Hart LA. Elephant-initiated interactions with humans: Individual differences and specific preferences in captive African elephants (Loxodonta africana). Front Vet Sci. 2017;4:60. doi: 10.3389/fvets.2017.00060 28503553
52. De Silva S, Schmid V, Wittemyer G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav Ecol. 2017;28(1):243–52.
53. Reul JMHM, Collins A, Saliba RS, Mifsud KR, Carter SD, Gutierrez-Mecinas M, et al. Glucocorticoids, epigenetic control and stress resilience. Neurobiol Stress. 2015;1:44–59. doi: 10.1016/j.ynstr.2014.10.001 27589660
54. Morgan KN, Tromborg CT. Sources of stress in captivity. Appl Anim Behav Sci. 2007;102(3):262–302.
55. Carlstead K, Shepherdson D. Alleviating stress in zoo animals with environmental enrichment. In: Moberg GP, Mench JA, editors. The biology of animal stress: Basic principles and implications for animal welfare. New York: CABI Publishing; 2000. pp. 337–54.
56. Brown JL, Paris S, Prado-Oviedo NA, Meehan CL, Hogan JN, Morfeld KA, et al. Reproductive health assessment of female elephants in North American zoos and association of husbandry practices with reproductive dysfunction in African elephants (Loxodonta africana). PLoS One. 2016;11(7):e0145673. doi: 10.1371/journal.pone.0145673 27416141
57. Holdgate MR, Meehan CL, Hogan JN, Miller LJ, Soltis J, Andrews J, et al. Walking behavior of zoo elephants: Associations between GPS-measured daily walking distances and environmental factors, social factors, and welfare indicators. PLoS One. 2016;11(7):e0150331. doi: 10.1371/journal.pone.0150331 27414411
58. Langbauer WR Jr. Elephant communication. Zoo Biol. 2000;19(5):425–45.
59. Makecha R, Fad O, Kuczaj II SA. The role of touch in the social interactions of Asian elephants (Elephas maximus). Int J Comp Psychol. 2012;25(1):60–82.
60. Poole JH, Granli P. Signals, gestures, and behavior of African elephants. In: Moss CJ, Croze H, Lee PC, editors. The Amboseli elephants: A long-term perspective on a long-lived mammal. Chicago: University of Chicago Press; 2011. pp. 109–24.
61. Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother. 2018;105:1205–22. doi: 10.1016/j.biopha.2018.05.086 30021357
62. Friend TH, Parker ML. The effect of penning versus picketing on stereotypic behavior of circus elephants. Appl Anim Behav Sci. 1999;64(3):213–25.
63. Kurt F, Garai M, editors. Stereotypies in Captive Asian elephants—A symopsium of social isolation. The International Elephant and Rhino Research Symposium; 2001; Vienna.
64. Vanitha V, Thiyagesan K, Baskaran N. Social life of captive Asian elephants (Elephas maximus) in southern India: Implications for elephant welfare. J Appl Anim Welf Sci. 2011;14:42–58. doi: 10.1080/10888705.2011.527603 21191847
65. Brown J, Bray J, Carlstead K, Dickey D, Farin C, Heugten KA-v. Environmental, social, management and health factors associated with within- and between-individual variability in fecal glucocorticoid metabolite concentrations in zoo-housed Asian and African elephants. bioRxiv; 2019. doi: 10.1101/634691
66. Ganswindt A, Rasmussen HB, Heistermann M, Hodges JK. The sexually active states of free-ranging male African elephants (Loxodonta africana): Defining musth and non-musth using endocrinology, physical signals, and behaviour. Horm Behav. 2005;47:83–91. doi: 10.1016/j.yhbeh.2004.09.002 15579269
67. Pokharel SS, Seshagiri PB, Sukumar R. Assessment of season-dependent body condition scores in relation to faecal glucocorticoid metabolites in free-ranging Asian elephants. Conserv Physiol. 2017;5(1):cox039. doi: 10.1093/conphys/cox039 28721215
68. Viljoen JJ, Ganswindt A, Palme R, Reynecke HC, du Toit JT, Langbauer WRJr. Measurement of faecal glucocorticoid concentrations in free-ranging African elephants: Baseline values from the Kruger National Park. Koedoe. 2008;50:18–21.
69. North American Veterinary Technician Association. Veterinary technician. Yardley: Veterinary Learning Systems Co.; 1995.
70. Woolley L-A, Millspaugh JJ, Woods RJ, van Rensburg SJ, Page BR, Slotow R. Intraspecific strategic responses of African elephants to temporal variation in forage quality. J Wildl Manage. 2009;73(6):827–35.
71. Tingvold HG, Fyumagwa R, Bech C, Baardsen LF, Rosenlund H, Røskaft E. Determining adrenocortical activity as a measure of stress in African elephants (Loxodonta africana) in relation to human activities in Serengeti ecosystem. Afr J Ecol. 2013;51(4):580–9.
72. Barnes RFW. Elephant behaviour in a semi-arid environment. Afr J Ecol. 1983;21(3):185–96.
73. Carlstead K. Determining the causes of stereotypic behaviours in zoo carnivores. In: Shepherdson DJ, Mellen JD, Hutchins M, editors. Second nature: Environmental enrichment for captive animals. London: Smithsonian Institution Press; 1998. pp. 172–83.
74. Pomerantz O, Paukner A, Terkel J. Some stereotypic behaviors in rhesus macaques (Macaca mulatta) are correlated with both perseveration and the ability to cope with acute stressors. Behav Brain Res. 2012;230(1):274–80. doi: 10.1016/j.bbr.2012.02.019 22366267
75. Bergeron H, Cabib S. The coping hypothesis of stereotypic behaviour. In: Rushen J, Mason G, editors. Stereotypic Animal Behaviour: Fundamentals and applications to welfare. Oxfordshire: CABI; 2006. pp. 14–5.
76. Mason GJ, Latham NR. Can't stop, won't stop: is stereotypy a reliable animal welfare indicator? Anim Welf. 2004;13(1):57–69.
77. Wiepkema PR, Van Hellemond KK, Roessingh P, Romberg H. Behaviour and abomasal damage in individual veal calves. Appl Anim Behav Sci. 1987;18(3):257–68.
78. Briefer Freymond S, Bardou D, Briefer EF, Bruckmaier R, Fouche N, Fleury J, et al. The physiological consequences of crib-biting in horses in response to an ACTH challenge test. Physiol Behav. 2015;151:121–8. doi: 10.1016/j.physbeh.2015.07.015 26187578
79. Ayala I, Martos NF, Silvan G, Gutierrez-Panizo C, Clavel JG, Illera JC. Cortisol, adrenocorticotropic hormone, serotonin, adrenaline and noradrenaline serum concentrations in relation to disease and stress in the horse. Res Vet Sci. 2012;93(1):103–7. doi: 10.1016/j.rvsc.2011.05.013 21641009
80. Seesupa S, Wachirapakorn C, Aiumlamai S. Effects of induced subacute ruminal acidosis and laminitis on lipopolysaccharide binding protein, cortisol and progesterone levels in dairy heifers. Thai J Vet Med. 2017;47(4):501–11.
81. Ganswindt A, Heistermann M, Hodges K. Physical, physiological, and behavioral correlates of musth in captive African elephants (Loxodonta africana). Physiol Biochem Zool. 2005;78(4):505–14. doi: 10.1086/430237 15957105
82. Ganswindt A, Mu¨nscher S, Henley M, Palme R, Thompson P, Bertschinger H. Concentrations of faecal glucocorticoid metabolites in physically injured free-ranging African elephants (Loxodonta africana). Wildl Biol. 2010;16(3):323–32.
83. Ice GH, James GD. Measuring stress in humans. Cambridge: Cambridge University Press; 2007.
84. Solowiej K, Mason V, Upton D. Review of the relationship between stress and wound healing: Part 1. J Wound Care. 2009;18(9):357–66. doi: 10.12968/jowc.2009.18.9.44302 19789472
85. Noppe G, van den Akker EL, de Rijke YB, Koper JW, Jaddoe VW, van Rossum EF. Long-term glucocorticoid concentrations as a risk factor for childhood obesity and adverse body-fat distribution. Int J Obes. 2016;40(10):1503–9.
86. Wang M. The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr Metab (Lond). 2005;2(1):3. doi: 10.1186/1743-7075-2-3 15689240
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy