Localization and dynamic change of saponins in Cyclocarya paliurus (Batal.) Iljinskaja
Autoři:
Xiaoling Chen aff001; Yu Wang aff001; Hu Zhao aff001; Xiangxiang Fu aff001; Shengzuo Fang aff001
Působiště autorů:
College of Forestry, Nanjing Forestry University Southern Modern Forestry Collaborative Innovation Centre, Nanjing Forestry University, Nanjing, China
aff001
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223421
Souhrn
Cyclocarya paliurus is a unique tree species of that grows in southern China. The tree contains distinctive saponins in the leaf that has hypoglycemic and hypolipidemic effects. It was aimed to detect localization of saponins and suitable time of harvest for medicinal uses. Histochemical, cytochemical localization and UV-spectrophotometry were carried out in C. paliurus plant. We found that in all organs, the saponins were primarily located in the parenchyma cells and the highest saponins accumulation was in the palisade tissue in leaves. Cytochemical localization results indicated that saponins were mainly distributed in the chloroplast, vesicle, and plasmalemma. On average, the total saponins content in leaves (20.57 mg·g-1) was two and three times greater than in root (10.19 mg·g-1) and shoot (6.20 mg·g-1), respectively. Moreover, the saponins content in the leaf and root exhibited fluctuations, which were highest in September. Considering saponins levels and biomass, we conclude that harvesting all leaves in September is an economical and effective strategy for medicinal use in C. paliurus.
Klíčová slova:
Epidermis – Chloroplasts – Leaves – Medicinal plants – Vesicles – Phloem – Cytochemistry – Xylem
Zdroje
1. Yin Z, Shangguan X, Chen J, Zhao Q, Li D. Growth and triterpenic acid accumulation of Cyclocarya paliurus cell suspension cultures. Biotechnol Bioprocess Eng. 2013; doi: 10.1007/s12257-012-0751-5
2. Yin ZP, Shangguan XC, Li DM, Wu SF, Chen JG, Zhang YH. A study on ultrasonic assisted extraction of total triterpenoids from Cyclocarya Paliurus leaves. Acta Agric Univ Jiangxiensis. 32: 0373–0377.
3. Jiang C, Yao N, Wang Q, Zhang J, Sun Y, Xiao N, et al. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice. J Ethnopharmacol. 2014; doi: 10.1016/j.jep.2014.02.003 24530856
4. Ghosh J, Sil PC. Arjunolic acid: A new multifunctional therapeutic promise of alternative medicine. Biochimie. 2013. doi: 10.1016/j.biochi.2013.01.016 23402784
5. Alqahtani A, Hamid K, Kam A, Wong KH, Abdelhak Z, Razmovski-Naumovski V, et al. The Pentacyclic Triterpenoids in Herbal Medicines and Their Pharmacological Activities in Diabetes and Diabetic Complications. Curr Med Chem. 2013; doi: 10.2174/0929867311320070007
6. Somova LO, Nadar A, Rammanan P, Shode FO. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine. 2003; doi: 10.1078/094471103321659807 12725563
7. Yang DJ, Zhong ZC, Xie ZM. Studies on the sweet principles from the leaves of Cyclocarya paliurus (Batal.) Iljinskaya. Acta Pharm Sin. 1992;
8. Shu RG, Xu CR, Li LN. Studies on the sweet principles from the leaves of Cyclocarya Paliurus (Batal.) Iljinskaya. Acta Pharm Sin. 1995;27: 841–844.
9. Zhu KN, Jiang CH, Tian YS, Xiao N, Wu ZF, Ma YL, et al. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation. Phytomedicine. 2015; doi: 10.1016/j.phymed.2015.05.058 26220631
10. Wu ZF, Meng FC, Cao LJ, Jiang CH, Zhao MG, Shang XL, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells. Phytochemistry. 2017; doi: 10.1016/j.phytochem.2017.06.015 28688991
11. Liu Y, Cao Y, Fang S, Wang T, Yin Z, Shang X, et al. Antidiabetic effect of cyclocarya paliurus leaves depends on the contents of antihyperglycemic flavonoids and antihyperlipidemic triterpenoids. Molecules. 2018; doi: 10.3390/molecules23051042 29710841
12. Jiang C, Wang Q, Wei YJ, Yao N, Wu Z, Ma Y, et al. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice. J Ethnopharmacol. 2015; doi: 10.1016/j.jep.2015.10.006 26477373
13. Gao Y, He C, Bi W, Wu G, Altman E. Bioassay Guided Fractionation Identified Hederagenin as a Major Cytotoxic Agent from Cyclocarya paliurus Leaves. Planta Med. 2015; doi: 10.1055/s-0035-1557900 26393939
14. Li S, Li J, Guan XL, Li J, Deng SP, Li LQ, et al. Hypoglycemic effects and constituents of the barks of Cyclocarya paliurus and their inhibiting activities to glucosidase and glycogen phosphorylase. Fitoterapia. 2011; doi: 10.1016/j.fitote.2011.07.002 21784137
15. Li YP, Long JX, Cao FX, XJ D. Histochemical localization of alkaloids accumulation in root of Rauvolfia serpentine. J Cent South Univ For Technol. 2010;30: 157–161.
16. Zhong XJ, YanQun LI, Huang RS. Histochemical localization of foliage leaves of Pyrrosia sheareri and P. porosa. Hubei Agric Sci. 2012;51: 3540–3544.
17. Tan LL, Cai X, Hu ZH, Ni XL. Localization and dynamic change of saikosaponin in root of bupleurum chinense. J Integr Plant Biol. 2008; doi: 10.1111/j.1744-7909.2008.00668.x 18713344
18. Liao YH, Lu JH, Li N, Zhang JZ, Li XY. Anatomical structure, total flavonoids histochemical localization and content comparization of vegetative organs in Glycyrrhiza glabra L. Acta Bot Boreali-Occidentalia Sin. 2010;30: 2406–2411.
19. Kubo M, Tani T, Katsuki T, Ishizaki K, Arichi S. Histochemistry. I. Ginsenosides in Ginseng (Panax ginseng C. A. Meyer, Root). J Nat Prod. 1980;43: 278–284. doi: 10.1021/np50008a006
20. Teng HM, Fang MF, Cai X, Hu ZH. Localization and dynamic change of saponin in vegetative organs of polygala tenuifolia. J Integr Plant Biol. 2009; doi: 10.1111/j.1744-7909.2009.00830.x 19522811
21. Li JT, Peng L, Hu ZH, Mu W. Structural development of root and their relationship to accumulation of triterpenoid saponins in Achyranthes bidentata Bl. Fen Zi Xi Bao Sheng Wu Xue Bao. 2007;
22. Li YH, Lu XY, Liu X, Liu Y. Research advances in coordination chemistry of traditional Chinese medicine. China J Chinese Mater Medica. 31: 1309–1313.
23. Cai X., Zheng L., Hu Z.H. Ultracytochemical studies on the accumulation of saikosaponin during the root development in Bupleurum scorzonerifolium Willd. J Chinese Electron Microsc Soc. 2009;28: 414–419.
24. Fan JP, He CH. Simultaneous quantification of three major bioactive triterpene acids in the leaves of Diospyros kaki by high-performance liquid chromatography method. J Pharm Biomed Anal. 2006; doi: 10.1016/j.jpba.2006.01.044 16527439
25. Rouhani S, Alizadeh N, Salimi S, Ghasemi TH. Ultrasonic assisted extraction of natural pigments from rhizomes of Curcuma Longa L. Prog Color Color Coat. 2009;2: 103–113.
26. Deng B, Shang XL, Fang SL, Qian C. Optimization of ultrasonic-assisted extraction of total triterpenoid compounds from Cyclocarya paliurus leaves. J Nanjing For Univ. 2012;36: 101–104.
27. Liu SB, Lin R, Hu ZH. Histochemical localization of ginsenosides in Gynostemma pentaphyllum and the content changes of total gypenosides. Shi Yan Sheng Wu Xue Bao. 2005;
28. Wu LJ, Lou HX, Zhou J. Medicinal chemistry of natural products. Beijing: People’s medical publishing house; 2011.
29. Abdelrahman M, Hirata S, Ito SI, Yamauchi N, Shigyo M. Compartmentation and localization of bioactive metabolites in different organs of Allium roylei. Biosci Biotechnol Biochem. 2014; doi: 10.1080/09168451.2014.915722 25229844
30. Xu H, Wang Y, Chen Y, Zhang P, Zhao Y, Huang Y, et al. Subcellular localization of galloylated catechins in tea plants [Camellia sinensis (L.) O. Kuntze] assessed via immunohistochemistry. Front Plant Sci. 2016;7: 1–10. doi: 10.3389/fpls.2016.00001 26858731
31. Yokota S, Onohara Y, Shoyama Y. Immunofluorescence and Immunoelectron Microscopic Localization of Medicinal Substance, Rb1, in Several Plant Parts of Panax ginseng. Curr Drug Discov Technol. 2011; doi: 10.2174/157016311794519938
32. Yao RL, Li HJ, Zhang XN. Effect of MeJA on terpenoid synthetase activities and their cytochemical localization in Pinus massonina. Guihaia. Guihaia. 2017; doi: 10.11931/guihaia.gxzw-201707015
33. Zhou ZX, Dou DQ, Zhao HX. The dynamic accumulation of ginsenosides in Panax sinseng “linxia shanshen” in different seasons. Ginseng Res. 2010;2: 12–18.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy