Macular thickness measurements of healthy, naïve cynomolgus monkeys assessed with spectral-domain optical coherence tomography (SD-OCT)
Autoři:
Nora Denk aff001; Peter Maloca aff002; Guido Steiner aff001; Christian Freichel aff001; Simon Bassett aff001; Tobias K. Schnitzer aff001; Pascal W. Hasler aff002
Působiště autorů:
Pharma Research and Early Development (pRED), Pharmaceutical Sciences (PS), Roche Innovation Center Basel, Basel, Switzerland
aff001; OCTlab Research Laboratory, Department of Ophthalmology, University of Basel, Basel, Switzerland
aff002; Moorfields Eye Hospital, London, United Kingdom
aff003; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
aff004
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222850
Souhrn
The purpose of this study was to measure central macular thickness in an unprecedented number of cynomolgus monkeys. Macular thickness was measured with Heidelberg spectral-domain OCT in 320 eyes of healthy and treatment-naïve cynomolgus monkeys (80 males and 80 females). The macula was successfully measured in all 320 eyes. Macular thickness was not significantly different between the sexes. The mean central macular thickness was 244 μm (+/- 21 μm). Macular thicknesses in the quadrants were 327 +/-17 μm (temporal inner), 339 +/- 17 μm (inferior inner), 341 +/- 14 μm (superior inner), 341 +/-18 μm (nasal inner), and 299 +/- 20 μm (temporal outer), 320 +/- 16 μm (superior outer), 332 +/-23 μm (inferior outer), and 337 +/-18 μm (nasal outer). Highly significant differences between the nasal and temporal quadrants were detected. This study successfully demonstrated the feasibility of retinal thickness measurements in healthy cynomolgus monkeys. The present findings indicate that the macula is thicker in cynomolgus monkeys than in humans and provide important normative data for future studies.
Klíčová slova:
Eyes – Fovea centralis – In vivo imaging – Monkeys – Primates – Retina – Tomography – Toxicology
Zdroje
1. Schmid MK, Reich O, Faes L, Boehni SC, Bittner M, Howell JP, et al. Comparison of Outcomes and Costs of Ranibizumab and Aflibercept Treatment in Real-Life. PLoS One. 2015;10(8):e0135050. doi: 10.1371/journal.pone.0135050 26241852
2. Matas J, Llorenc V, Fonollosa A, Esquinas C, Diaz-Valle D, Berasategui B, et al. Predictors for functional and anatomic outcomes in macular edema secondary to non-infectious uveitis. PLoS One. 2019;14(1):e0210799. doi: 10.1371/journal.pone.0210799 30677041
3. Feltgen N, Hattenbach LO, Bertelmann T, Callizo J, Rehak M, Wolf A, et al. Comparison of ranibizumab versus dexamethasone for macular oedema following retinal vein occlusion: 1-year results of the COMRADE extension study. Acta Ophthalmol. 2018;96(8):e933–e41. doi: 10.1111/aos.13770 29855153
4. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol. 2006;124(2):193–8. doi: 10.1001/archopht.124.2.193 16476888
5. Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One. 2009;4(10):e7507. doi: 10.1371/journal.pone.0007507 19838301
6. McLellan GJ, Rasmussen CA. Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations. Vet Ophthalmol. 2012;15 Suppl 2:13–28.
7. Huber G, Beck SC, Grimm C, Sahaboglu-Tekgoz A, Paquet-Durand F, Wenzel A, et al. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci. 2009;50(12):5888–95. doi: 10.1167/iovs.09-3724 19661229
8. Kim KH, Puoris'haag M, Maguluri GN, Umino Y, Cusato K, Barlow RB, et al. Monitoring mouse retinal degeneration with high-resolution spectral-domain optical coherence tomography. J Vis. 2008;8(1):17 1–1. doi: 10.1167/8.1.17 18318620
9. Wilkie DA. The ophthalmic examination as it pertains to general ocular toxicology: basic and advanced techniques and species-associated finding. Ocular Pharmacology and Toxicology Totowa, NJ: Humana Press. p. 143–203.
10. Nieves-Moreno M, Martinez-de-la-Casa JM, Cifuentes-Canorea P, Sastre-Ibanez M, Santos-Bueso E, Saenz-Frances F, et al. Normative database for separate inner retinal layers thickness using spectral domain optical coherence tomography in Caucasian population. PLoS One. 2017;12(7):e0180450. doi: 10.1371/journal.pone.0180450 28678834
11. Nigam B, Garg P, Ahmad L, Mullick R. OCT Based Macular Thickness in a Normal Indian Pediatric Population. J Ophthalmic Vis Res. 2018;13(2):144–8. doi: 10.4103/jovr.jovr_51_17 29719642
12. Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology. 2010;117(8):1585–94. doi: 10.1016/j.ophtha.2009.12.036 20472290
13. Gella L, Raman R, Sharma T. Macular thickness measurements using Copernicus Spectral Domain Optical Coherence Tomography. Saudi J Ophthalmol. 2015;29(2):121–5. doi: 10.1016/j.sjopt.2014.10.003 25892930
14. Gella L, Raman R, Pal SS, Nittala MG, Sharma T. Morphological and functional changes in spectral domain optical coherence tomography and microperimetry in macular microhole variants: spectral domain optical coherence tomography and microperimetry correlation. Indian J Ophthalmol. 2012;60(1):53–6. doi: 10.4103/0301-4738.91347 22218248
15. Team RDC. R: A language and environment for statistical computing. 2008 [Available from: http://www.R-project.org.
16. Peng YJ, Tsai MJ. Impact of metabolic control on macular thickness in diabetic macular oedema. Diab Vasc Dis Res. 2018;15(2):165–8. doi: 10.1177/1479164117746023 29212365
17. Matet A, Kostic C, Bemelmans AP, Moulin A, Rosolen SG, Martin S, et al. Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res. 2017;188:40–57 e4. doi: 10.1016/j.trsl.2017.06.012 28754419
18. Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105(2):360–70. doi: 10.1016/s0161-6420(98)93601-6 9479300
19. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Invest Ophthalmol Vis Sci. 2006;47(6):2351–7. doi: 10.1167/iovs.05-1396 16723444
20. Natung T, Keditsu A, Lyngdoh LA, Dkhar B, Prakash G. Normal Macular Thickness in Healthy Indian Eyes Using Spectral Domain Optical Coherence Tomography. Asia Pac J Ophthalmol (Phila). 2016;5(3):176–9.
21. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 2009;127(1):50–8. doi: 10.1001/archophthalmol.2008.553 19139338
22. Kelty PJ, Payne JF, Trivedi RH, Kelty J, Bowie EM, Burger BM. Macular thickness assessment in healthy eyes based on ethnicity using Stratus OCT optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49(6):2668–72. doi: 10.1167/iovs.07-1000 18515595
23. El-Ashry M, Hegde V, James P, Pagliarini S. Analysis of macular thickness in British population using optical coherence tomography (OCT): an emphasis on interocular symmetry. Curr Eye Res. 2008;33(8):693–9. doi: 10.1080/02713680802323140 18696345
24. Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110(1):177–89. doi: 10.1016/s0161-6420(02)01564-6 12511364
25. Asefzadeh B, Cavallerano AA, Fisch BM. Racial differences in macular thickness in healthy eyes. Optom Vis Sci. 2007;84(10):941–5. doi: 10.1097/OPX.0b013e318157a6a0 18049358
26. Patel PJ, Foster PJ, Grossi CM, Keane PA, Ko F, Lotery A, et al. Spectral-Domain Optical Coherence Tomography Imaging in 67 321 Adults: Associations with Macular Thickness in the UK Biobank Study. Ophthalmology. 2016;123(4):829–40. doi: 10.1016/j.ophtha.2015.11.009 26746598
27. Barrio-Barrio J, Noval S, Galdos M, Ruiz-Canela M, Bonet E, Capote M, et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol. 2013;91(1):e56–63. doi: 10.1111/j.1755-3768.2012.02562.x 23347665
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Prevalence of pectus excavatum (PE), pectus carinatum (PC), tracheal hypoplasia, thoracic spine deformities and lateral heart displacement in thoracic radiographs of screw-tailed brachycephalic dogs
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy