Subpopulation augmentation among habitat patches as a tool to manage an endangered Mojave Desert wetlands-dependent rodent during anthropogenic restricted water climate regimes
Autoři:
Andrés M. López-Pérez aff001; Janet Foley aff001; Austin Roy aff001; Risa Pesapane aff001; Stephanie Castle aff001; Amanda Poulsen aff001; Deana L. Clifford aff001
Působiště autorů:
Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
aff001; Wildlife Investigations Lab, California Department of Fish and Wildlife, Rancho Cordova, California, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224246
Souhrn
Intensive management may be necessary to protect some highly vulnerable endangered species, particularly those dependent on water availability regimes that might be disrupted by ongoing climate change. The Amargosa vole (Microtus californicus scirpensis) is an increasingly imperiled rodent constrained to rare wetland habitat in the Mojave Desert. In 2014 and 2016, we trapped and radio-collared 30 voles, 24 were translocated and six remained at donor and recipient marshes as resident control voles. Soft-release was performed followed by remote camera and radio-telemetry monitoring. Although comparative metrics were not statistically significant, the mean maximum known distance moved (MDM) was longer for translocated (82.3 ± 14.6 m) vs. resident-control voles (74.9 ± 17.5 m) and for female (98.4 ± 19.9 m) vs. male (57.8 ± 9.1 m) voles. The mean area occupied (AO) tended to be greater in female (0.15 ± 0.04 ha) vs. male (0.12 ± 0.03 ha) voles, and control voles (0.15 ± 0.05 ha) compared with translocated voles (0.13 ± 0.03 ha). The mean minimum known time alive (MTA) was 38.2 ± 19.4 days for resident-control voles and 47.0 ± 10.6 days for translocated voles. Female survival (55.7 ± 14.3 days) exceeded that of males (31.5 ± 9.4 days) regardless of study group. Activity in bulrush/rushes mix and bulrush vegetation types was strongly and significantly overrepresented compared with salt grass and rushes alone, and habitat selection did not differ between resident and translocated voles. Our results provide ecological and methodological insights for future translocations as part of a strategy of promoting long-term survival of an extremely endangered small mammal in a wild desert environment.
Klíčová slova:
Deserts – Grasses – Habitats – Predation – Rodents – Voles – Wildlife – Marshes
Zdroje
1. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJ, Collen B. Defaunation in the Anthropocene. Science 2014;345:401–406. doi: 10.1126/science.1251817 25061202
2. Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances 2015;1:e1400253. doi: 10.1126/sciadv.1400253 26601195
3. IUCN. IUCN Guidelines for Reintroductions and Other Conservation Translocations. https://portals.iucn.org/library/efiles/documents/2013-009.pdf, 2012.
4. Oro D, Martínez-Abraín A, Villuendas E, Sarzo B, Mínguez E, Carda J, et al. Lessons from a failed translocation program with a seabird species: Determinants of success and conservation value. Biol Cons 2011;144:851–858.
5. Fernando P, Leimgruber P, Prasad T, Pastorini J. Problem-elephant translocation: translocating the problem and the elephant? PloS One 2012;7:e50917. doi: 10.1371/journal.pone.0050917 23236404
6. Tennant EN, Germano D. Survival of translocated Heermann’s Kangaroo Rats (Dipodomys heermanni) in the San Joaquin Desert of California using hard and soft release methods. Western Wildl 2017;4:1–11.
7. Kernohan BJ, Gitzen RA, Millspaugh JJ. Analysis of animal space use and movements In: Millspaugh J, Marzluff J, eds. Radio Tracking and Animal Populations. San Diego: Academic Press, 2001;125–166.
8. Northrup JM, Hooten MB, Anderson CR, Wittemyer GJE. Practical guidance on characterizing availability in resource selection functions under a use–availability design. Ecol 2013;94:1456–1463.
9. Pérez I, Anadón JD, Díaz M, Nicola GG, Tella JL, Giménez A. What is wrong with current translocations? A review and a decision-making proposal. Front Ecol Environ 2012;10:494–501.
10. U.S. Fish and Wildlife Service. Amargosa voles (Microtus californicus scirpensis) recovery plan. Portland, Or, 1997;43 pp.
11. Cudworth N, Koprowski J. Microtus californicus (Rodentia: Cricetidae). Mammal Species 2010;42:230–243.
12. Klinger R, Cleaver M, Anderson S, Maier P, Clark J. Implications of scale-independent habitat specialization on persistence of a rare small mammal. Global Ecol Cons 2015;3:100–114.
13. Hereford R, Webb R, Longpre C. Precipitation history and ecosystem response to multidecadal precipitation variability in the Mojave Desert region, 1893–2001. J Arid Env 2006;67:13–34.
14. Iknayan KJ, Beissinger SR. Collapse of a desert bird community over the past century driven by climate change. Proc Natl Acad Sci 2018;115:8597–8602. doi: 10.1073/pnas.1805123115 30082401
15. Castle S, Rejmankova E, Foley J, Parmenter S. Hydrologic alterations impact plant litter decay rate and ecosystem resilience in Mojave wetlands. Restoration Ecol 2019.
16. Foley J, Clifford D, Parmenter S, Rejmankova E, Croft B, Sorrells S. Restoration of historic habitat to support newly established subpopulations of the endangered Amargosa vole. Sacramento, CA: California Department of Fish and Wildlife, 2014.
17. Roy A, Clifford D, Rivera R, Klinger R, Wengert GM, Poulsen A, et al. Survey of potential predators of the endangered Amargosa Vole (Microtus californicus scirpensis). Western Wildl 2019;6:5–13.
18. Hartley M, Sainsbury A. Methods of disease risk analysis in wildlife translocations for conservation purposes. EcoHealth 2017;14:16–29. doi: 10.1007/s10393-016-1134-8 27287192
19. Shier DM, Swaisgood RR. Fitness costs of neighborhood disruption in translocations of a solitary mammal. Cons Biol 2012;26:116–123.
20. Sikes RS, Gannon WL, the Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 2011;92:235–253.
21. Klinger RC, Cleaver M, Anderson S, Maier P, Clark J. Short-term population dynamics, demography, and habitat selection by the Amargosa vole: USGS Final Report to the Bureau of Land Management, 2013;72.
22. Clifford D, Foley J, Roy A. Final performance report: Key components for recovery and management of the Amargosa vole. California Department of Fish and Wildlife. Sacramento, California, USA. 2016.
23. Foley J, Foley P. Rapid assessment of population viability using stochastic extinction analysis for the endangered Amargosa vole, Microtus californicus scirpensis. Wild Biol Pract 2016;12:21–31.
24. Jancowski K, Orchard S. Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota 2013;16:17.
25. Ullman-Cullere MH, Foltz CJ. Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Anim Sci 1999;49:319–323. 10403450
26. Stickel LF. A comparison of certain methods of measuring ranges of small mammals. J Mammal 1954;35:1–15.
27. Foley J, Beechan A, Crews A, Lindauer A, Roy A, Vogel J, et al. Range-wide assessment of the endangered Amargosa vole and analysis of critical habitat stressors. University of California, Davis. A Report to the California Department of Fish and Wildlife 2017.
28. Calenge C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 2006;197:516–519.
29. Manly BFJ, M L.L., Thomas DL, McDonald TL, Erickson WP. Resource selection by animals. Statistical design and analysis for field studies. Boston: Kluwer, 2002.
30. Morris DW. Toward an ecological synthesis: a case for habitat selection. Oecologia 2003;136:1–13. doi: 10.1007/s00442-003-1241-4 12690550
31. Johnson CJ, Seip DR. Relationship between resource selection, distribution, and abundance: a test with implications to theory and conservation. Pop Ecol 2008;50:145–157.
32. Pesapane R, Clifford DL, Allan N, Roy A, Bellini N, Rivett O, et al. The biology and ecology of the Amargosa vole. Western Wildl 2018;5.
33. Meserve PL, Kelt DA, Milstead WB, Gutiérrez JR. Thirteen years of shifting top-down and bottom-up control. BioScience 2003;53:633–646.
34. Lightfoot DC, Davidson AD, Parker DG, Hernández L, Laundré JW. Bottom-up regulation of desert grassland and shrubland rodent communities: implications of species-specific reproductive potentials. J Mammal 2012;93:1017–1028.
35. Izbicki JA. Physical and temporal isolation of mountain headwater streams in the western Mojave Desert, southern California. J Am Water Resour Assoc 2007;43:26–40.
36. Moorhouse T, Gelling M, Macdonald D. Effects of habitat quality upon reintroduction success in water voles: evidence from a replicated experiment. Biol Cons 2009;142:53–60.
37. Lewis JC, McIlvain E, McVickers R, Peterson B. Techniques used to establish and limit prairie dog towns. Proceedings of the Oklahoma Academy of Science 1979;59:27–30.
38. Jacquart H, Flinders J, Coffeen M, Hasenyager R. Prescriptive transplanting and monitoring of Utah prarie dog (Cynomys parvidens). Provo, UT: Brigham Young University, 1986.
39. Truett JC, Dullum JAL, Matchett MR, Owens E, Seery D. Translocating prairie dogs: a review. Wildl Soc Bull 2001:863–872.
40. Hamley J, Falls J. Reduced activity in transmitter-carrying voles. Can J Zool 1975;53:1476–1478.
41. Webster AB, Brooks RJ. Effects of radiotransmitters on the meadow vole, Microtus pennsylvanicus. Can J Zool 1980;58:997–1001. doi: 10.1139/z80-139 7000327
42. Mihok S, Turner BN, Iverson SL. The characterization of vole population dynamics. Ecol Monographs 1985;55:399–420.
43. Boyle SA, Lourenço WC, Da Silva LR, Smith AT. Home range estimates vary with sample size and methods. Folia Primatologica 2009;80:33–42.
44. Tristiani H, Murakami O, Watanabe H. Ranging and nesting behavior of the ricefield rat Rattus argentiventer (Rodentia: Muridae) in West Java, Indonesia. J Mammal 2003;84:1228–1236.
45. Püttker T, De Barros CDS, Martins TK, Sommer S, Pardini R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J Mammal 2012;93:115–123.
46. Borowski Z. Habitat selection and home range size of field voles Microtus agrestis in Słowiński National Park, Poland. Acta Theriologica 2003;48:325–333.
47. Gliwicz J. Space use in the root vole: basic patterns and variability. Ecography 1997;20:383–389.
48. Pita R, Mira A, Beja P. Spatial segregation of two vole species (Arvicola sapidus and Microtus cabrerae) within habitat patches in a highly fragmented farmland landscape. European J Wildl Res 2010;56:651–662.
49. Erlinge S, Hoogenboom I, Agrell J, Nelson J, Sandell M. Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. J Mammal 1990;71:597–603.
50. Ott-Conn C, Clifford D, Branston T, Klinger R, Foley J. Pathogen infection and exposure, and ectoparasites of the federally endangered Amargosa vole (Microtus californicus scirpensis), California, USA. J Wildl Dis 2014;50:767–776. doi: 10.7589/2013-09-248 25121407
51. McClenaghan LR, Montgomery SJ. Distribution and abundance of the Amargosa Vole (Microtus californicus scirpensis). Sacramento, California USA: California Department of Fish & Game, 1998;54.
52. Allan N, Pesapane R, Foley J, Clifford D. Successful care and propagation of the endangered amargosa vole (Microtus californicus scirpensis) in captivity. Zoo Biol 2018;37:59–63. doi: 10.1002/zoo.21399 29377272
53. Seddon PJ, Armstrong DP, Maloney RF. Developing the science of reintroduction biology. Cons Biol 2007;21:303–312.
54. Snyder NF, Derrickson SR, Beissinger SR, Wiley JW, Smith TB, Toone WD, et al. Limitations of captive breeding in endangered species recovery. Cons Biol 1996;10:338–348.
55. Fischer J, Lindenmayer D. An assessment of the published results of animal relocations. Biol Cons 2000;96:1–11.
56. Seddon PJ, Griffiths CJ, Soorae PS, Armstrong DP. Reversing defaunation: Restoring species in a changing world. Science 2014;345:406–412. doi: 10.1126/science.1251818 25061203
57. Van Houtan KS, Halley JM, Van Aarde R, Pimm SL. Achieving success with small, translocated mammal populations. Cons Letters 2009;2:254–262.
58. Griffith B, Scott JM, Carpenter JW, Reed C. Animal translocations and potential disease transmission. J Zoo Wildl Med 1993:231–236.
59. Ricciardi A, Simberloff D. Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 2009;24:248–253. doi: 10.1016/j.tree.2008.12.006 19324453
60. Hagerman S, Dowlatabadi H, Satterfield T, McDaniels T. Expert views on biodiversity conservation in an era of climate change. Global Env Change 2010;20:192–207.
61. Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E. Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Cons 2010;143:18–27.
62. Hewitt N, Klenk N, Smith A, Bazely D, Yan N, Wood S, et al. Taking stock of the assisted migration debate. Biol Cons 2011;144:2560–2572.
63. Griffith B, Scott JM, Carpenter JW, Reed C. Translocation as a species conservation tool: status and strategy. Science 1989;245:477–480. doi: 10.1126/science.245.4917.477 17750257
64. Armstrong DP, Seddon PJ. Directions in reintroduction biology. Trends Ecol Evol 2008;23:20–25. doi: 10.1016/j.tree.2007.10.003 18160175
65. Wolf CM, Garland T, Griffith B. Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biol Cons 1998;86:243–255.
66. Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton J-D. Conspecifics can be aliens too: A review of effects of restocking practices in vertebrates. J Nature Cons 2012;20:231–241.
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy