What happens in the brain of meditators when perception changes but not the stimulus?
Autoři:
Jürgen Kornmeier aff001; Evelyn. Friedel aff002; Lukas Hecker aff001; Stefan Schmidt aff003; Marc Wittmann aff001
Působiště autorů:
Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
aff001; Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
aff002; Faculty of Medicine, University of Freiburg, Freiburg, Germany
aff003; Eye Center, Medical Center, University of Freiburg, Freiburg, Germany
aff004; Department of Psychosomatic Medicine and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
aff005
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223843
Souhrn
During the observation of an ambiguous figure our perception alternates between mutually exclusive interpretations, although the stimulus itself remains unchanged. The rate of these endogenous reversals has been discussed as reflecting basic aspects of endogenous brain dynamics. Recent evidence indicates that extensive meditation practice evokes long-term functional and anatomic changes in the brain, also affecting the endogenous brain dynamics. As one of several consequences the rate of perceptual reversals during ambiguous figure perception decreases. In the present study we compared EEG-correlates of endogenous reversals of ambiguous figures between meditators and non-meditating controls in order to better understand timing and brain locations of this altered endogenous brain dynamics. A well-established EEG paradigm was used to measure the neural processes underlying endogenous perceptual reversals of ambiguous figures with high temporal precision. We compared reversal-related ERPs between experienced meditators and non-meditating controls. For both groups we found highly similar chains of reversal-related ERPs, starting early in visual areas, therewith replicating previous findings from the literature. Meditators, however, showed an additional frontal ERP signature already 160 ms after stimulus onset (Frontal Negativity). We interpret the additional, meditation-specific ERP results as evidence that extensive meditation practice provides control of frontal brain areas over early sensory processing steps. This may allow meditators to overcome phylogenetically evolved perceptual and attentional processing automatisms.
Klíčová slova:
Attention – Cognition – Electroencephalography – Event-related potentials – Perception – Sensory perception – Vision – Dwell time
Zdroje
1. Necker LA. Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond Edinb Philos Mag J Sci. 1832;1: 329–337. http://dx.doi.org/doi:10.1080/14786443208647909
2. Kornmeier J, Hein CM, Bach M. Multistable perception: when bottom-up and top-down coincide. Brain Cogn. 2009;69: 138–147. doi: 10.1016/j.bandc.2008.06.005 18682314
3. Pelton LH, Solley CM. Acceleration of reversals of a Necker cube. Am J Psychol. 1968;81: 585–588. 5760039
4. Strüber D, Stadler M. Differences in top-down influences on the reversal rate of different categories of reversible figures. Perception. 1999;28: 1185–1196. doi: 10.1068/p2973 10694967
5. Schiller PV. Stroboskopische Alternativversuche. Psychol Forsch. 1933;17: 179–214. http://dx.doi.org/10.1007/BF02411959
6. Rubin E. Visuell wahrgenommene Figuren. Copenhagen: Gyldendals; 1921.
7. Blake R. A Primer on Binocular Rivalry, Including Current Controversies. Brain Mind. 2001;2: 5–38.
8. O’Shea RP, Kornmeier J, Roeber U. Predicting visual consciousness electrophysiologically from intermittent binocular rivalry. Ward LM, editor. PLoS ONE. 2013;8: e76134. doi: 10.1371/journal.pone.0076134 24124536
9. Pressnitzer D, Hupe JM. Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr Biol. 2006;16: 1351–7. doi: 10.1016/j.cub.2006.05.054 16824924
10. Schwartz JL, Grimault N, Hupe JM, Moore BC, Pressnitzer D. Multistability in perception: binding sensory modalities, an overview. Philos T Roy Soc B. 2012;367: 896–905. doi: 10.1098/rstb.2011.0254 22371612
11. Carter O, Konkle T, Wang Q, Hayward V, Moore C. Tactile Rivalry Demonstrated with an Ambiguous Apparent-Motion Quartet. Curr Biol. 2008;18: 1050–1054. doi: 10.1016/j.cub.2008.06.027 18635355
12. Conrad V, Vitello MP, Noppeney U. Interactions between apparent motion rivalry in vision and touch. Psychol Sci. 2012;23: 940–948. doi: 10.1177/0956797612438735 22810167
13. Liaci E, Bach M, Tebartz van Elst L, Heinrich SP, Kornmeier J. Ambiguity in Tactile Apparent Motion Perception. Herzog MH, editor. PLOS ONE. 2016;11: e0152736. doi: 10.1371/journal.pone.0152736 27171276
14. Leopold DA, Logothetis NK. Multistable phenomena: changing views in perception. Trends Cogn Sci. 1999;3: 254–264. doi: 10.1016/S1364-6613(99)01332-7 10377540
15. Kleinschmidt A, Sterzer P, Rees G. Variability of perceptual multistability: from brain state to individual trait. Philos Trans R Soc B Biol Sci. 2012;367: 988–1000. doi: 10.1098/rstb.2011.0367 22371620
16. Blake R, Brascamp J, Heeger DJ. Can binocular rivalry reveal neural correlates of consciousness? Philos Trans R Soc B Biol Sci. 2014;369: 20130211–20130211. doi: 10.1098/rstb.2013.0211 24639582
17. Bergum BO, Bergum JE. Creativity, perceptual stability, and self-perception. Bull Psychon Soc. 1979;14: 61–63.
18. Doherty MJ, Mair S. Creativity, Ambiguous Figures, and Academic Preference. Perception. 2012;41: 1262–1266. doi: 10.1068/p7350 23469705
19. Atmanspacher H, Filk T, Römer H. Quantum Zeno features of bistable perception. Biol Cybern. 2004;90: 33–40. doi: 10.1007/s00422-003-0436-4 14762722
20. Atmanspacher H, Bach M, Filk T, Kornmeier J, Römer H. Cognitive Time Scales in a Necker-Zeno Model for Bistable Perception. Open Cybern Syst J. 2008;2: 234–251.
21. Atmanspacher H, Filk T, Römer H. Complementarity in Bistable Perception. In: Atmanspacher H, Primas H, editors. Recasting Reality. Berlin, Heidelberg: Springer; 2009. pp. 135–150. doi: 10.1007/978-3-540-85198-1_7
22. Atmanspacher H, Filk T. The Necker-Zeno Model for Bistable Perception. Top Cogn Sci. 2013; 800–817. doi: 10.1111/tops.12044 24027224
23. Pöppel E. A hierarchical model of temporal perception. Trends Cogn Sci. 1997;1: 56–61. doi: 10.1016/S1364-6613(97)01008-5 21223864
24. von Steinbüchel N, Wittmann M, Szelag E. Temporal constraints of perceiving, generating, and integrating information: Clinical indications. Restor Neurol Neurosci. 1999;14: 167–182.
25. Wernery J, Atmanspacher H, Kornmeier J, Candia V, Folkers G, Wittmann M. Temporal processing in bistable perception of the Necker cube. Perception. 2015;44: 157–168. doi: 10.1068/p7780 26561969
26. Crick F, Koch C. Consciousness and neuroscience. Cereb Cortex. 1998;8: 97–107. doi: 10.1093/cercor/8.2.97 9542889
27. Maier A, Panagiotaropoulos TI, Tsuchiya N, Keliris GA, editors. Binocular rivalry: a gateway to consciousness [Internet]. Frontiers Media SA; 2012. doi: 10.3389/978-2-88919-069-0
28. Carter OL, Presti DE, Callistemon C, Ungerer Y, Liu GB, Pettigrew JD. Meditation alters perceptual rivalry in Tibetan Buddhist monks. Curr Biol. 2005;15: R412–3. doi: 10.1016/j.cub.2005.05.043 15936259
29. Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology (Berl). 2007;195: 415–424. doi: 10.1007/s00213-007-0930-9 17874073
30. Calvert JE, Harris JP, Phillipson OT, Babiker IE, Ford MF, Antebi DL. The perception of visual ambiguous figures in schizophrenia and Parkinson’s disease. Int Clin Psychopharmacol. 1988;3: 131–50. 3397521
31. Kornmeier J, Wörner R, Riedel A, Tebartz van Elst L. A different view on the Necker cube—Differences in multistable perception dynamics between Asperger and non-Asperger observers. PLOS ONE. 2017;12: e0189197. doi: 10.1371/journal.pone.0189197 29244813
32. Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18: 671–684. doi: 10.1038/nrn.2017.112 28951611
33. Wheatstone C. Contributions to the Physiology of Vision. Part the First. On Some Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision. Philos Trans R Soc Lond. 1838;128: 371–394. doi: 10.1098/rstl.1838.0019
34. von Helmholtz HLF. Handbuch der physiologischen Optik. Leipzig: Leopold Voss; 1867. doi: 10.3931/e-rara-21259
35. Wade NJ, Ono H. The stereoscopic views of Wheatstone and Brewster. Psychol Res. 1985;47: 125–133. doi: 10.1007/BF00309263 3903819
36. Kornmeier J, Bach M. Object perception: when our brain is impressed but we do not notice it. J Vis. 2009;9: 7 1–10. doi: 10.1167/9.1.7 19271877
37. Kornmeier J, Wörner R, Bach M. Can I trust in what I see?–EEG Evidence for a Cognitive Evaluation of Perceptual Constructs. Psychophysiology. 2016;53: 1507–1523. doi: 10.1111/psyp.12702 27387041
38. Liaci E, Fischer A, Heinrichs M, Tebartz van Elst L, Kornmeier J. Mona Lisa is always happy–and only sometimes sad. Sci Rep. 2017;7: 43511. doi: 10.1038/srep43511 28281547
39. VanRullen R, Reddy L, Koch C. The continuous wagon wheel illusion is associated with changes in electroencephalogram power at approximately 13 Hz. J Neurosci. 2006;26: 502–7. doi: 10.1523/JNEUROSCI.4654-05.2006 16407547
40. Kornmeier J, Friedel E, Wittmann M, Atmanspacher H. EEG correlates of cognitive time scales in the Necker-Zeno model for bistable perception. Conscious Cogn. 2017;53: 136–150. doi: 10.1016/j.concog.2017.04.011 28666186
41. Wittmann M. Moments in time. Front Integr Neurosci. 2011;5: 66. doi: 10.3389/fnint.2011.00066 22022310
42. Sauer S, Lemke J, Wittmann M, Kohls N, Mochty U, Walach H. How long is now for mindfulness meditators? Personal Individ Differ. 2012;52: 750–754.
43. Jha AP, Krompinger J, Baime MJ. Mindfulness training modifies subsystems of attention. Cogn Affect Behav Neurosci. 2007;7: 109–119. doi: 10.3758/CABN.7.2.109 17672382
44. Wittmann M, Schmidt S. Mindfulness meditation and the experience of time. In: Schmidt S, Walach H, editors. Meditation–Neuroscientific Approaches and Philosophical Implications. Cham: Springer International Publishing; 2014. doi: 10.1007/978-3-319-01634-4
45. Wittmann M, Otten S, Schötz E, Sarikaya A, Lehnen H, Jo H-G, et al. Subjective expansion of extended time-spans in experienced meditators. Front Psychol. 2015;5. doi: 10.3389/fpsyg.2014.01586 25642205
46. Blake R, Logothetis NK. Visual competition. Nat Rev Neurosci. 2002;3: 13–21. doi: 10.1038/nrn701 11823801
47. Kornmeier J, Bach M. Ambiguous figures–what happens in the brain when perception changes but not the stimulus. Front Hum Neurosci. 2012;6: 1–23. doi: 10.3389/fnhum.2012.00001
48. Brascamp J, Sterzer P, Blake R, Knapen T. Multistable Perception and the Role of the Frontoparietal Cortex in Perceptual Inference. Annu Rev Psychol. 2018;69: 77–103. doi: 10.1146/annurev-psych-010417-085944 28854000
49. Strüber D, Herrmann CS. MEG alpha activity decrease reflects destabilization of multistable percepts. Cogn Brain Res. 2002;14: 370–82.
50. Kornmeier J, Bach M. Early neural activity in Necker-cube reversal: Evidence for low-level processing of a gestalt phenomenon. Psychophysiology. 2004;41: 1–8. doi: 10.1046/j.1469-8986.2003.00126.x 14692995
51. Orbach J, Ehrlich D, Heath H. Reversibility of the Necker cube: I. An examination of the concept of “satiation of orientation.” Percept Mot Ski. 1963;17: 439–58.
52. O’Donnell BF, Hendler T, Squires NK. Visual evoked potentials to illusory reversals of the Necker cube. Psychophysiology. 1988;25: 137–143. doi: 10.1111/j.1469-8986.1988.tb00976.x 3399599
53. Kornmeier J, Heinrich SP, Atmanspacher H, Bach M. The reversing “Necker Wall”–a new paradigm with reversal entrainment reveals an early EEG correlate. ARVO 2001 Annual Meeting. 2001. p. 409.
54. Kornmeier J, Bach M. The Necker cube–an ambiguous figure disambiguated in early visual processing. Vis Res. 2005;45: 955–960. doi: 10.1016/j.visres.2004.10.006 15695180
55. Yokota Y, Minami T, Naruse Y, Nakauchi S. Neural processes in pseudo perceptual rivalry: An ERP and time–frequency approach. Neuroscience. 2014;271: 35–44. doi: 10.1016/j.neuroscience.2014.04.015 24759770
56. Pitts MA, Britz J. Insights from intermittent binocular rivalry and EEG. Front Hum Neurosci. 2011;5: 107. doi: 10.3389/fnhum.2011.00107 22046158
57. Bach M. Homepage of the Freiburg Visual Acuity & Contrast Test (‘FrACT’) [Internet]. 2018. Available: http://www.michaelbach.de/fract.html
58. World Medical Association. Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2000;284: 3043–3045. http://dx.doi.org/10.1001/jama.284.23.3043 11122593
59. Kornmeier J, Bach M. Bistable perception—along the processing chain from ambiguous visual input to a stable percept. Int J Psychophysiol. 2006;62: 345–9. doi: 10.1016/j.ijpsycho.2006.04.007 16808985
60. American Clinical Neurophysiology Society. Guideline 5: Guidelines for standard electrode position nomenclature. J Clin Neurophysiol. 2006;23: 107–10. 16612226
61. Guthrie D. Intergroup and intrasubject principal component analysis of event-related potentials. Psychophysiology. 1990;27: 111–9. doi: 10.1111/j.1469-8986.1990.tb02188.x 2339184
62. Britz J, Landis T, Michel CM. Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cereb Cortex. 2009;19: 55–65. doi: 10.1093/cercor/bhn056 18424780
63. Pitts MA, Martinez A, Stalmaster C, Nerger JL, Hillyard SA. Neural generators of ERPs linked with Necker cube reversals. Psychophysiology. 2009;46: 694–702. doi: 10.1111/j.1469-8986.2009.00822.x 19490514
64. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134: 9–21. doi: 10.1016/j.jneumeth.2003.10.009 15102499
65. Hecker L. Source App. 2019. Available: https://bitbucket.org/LukeTheHecker/source-app
66. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intell Neurosci. 2011;2011: 1–9. doi: 10.1155/2011/720971
67. Pascual-Marqui D. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: Exact, zero error localization. Math Phys Biol Phys Neurons Cogn. 2007;0710. Available: https://arxiv.org/ftp/arxiv/papers/0710/0710.3341.pdf
68. Van Veen BD, Buckley KM. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 1988;5: 4–24. doi: 10.1109/53.665
69. Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, et al. Multiple sparse priors for the M/EEG inverse problem. NeuroImage. 2008;39: 1104–1120. doi: 10.1016/j.neuroimage.2007.09.048 17997111
70. Litvak V, Friston K. Electromagnetic source reconstruction for group studies. NeuroImage. 2008;42: 1490–1498. doi: 10.1016/j.neuroimage.2008.06.022 18639641
71. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6: 65–70. http://dx.doi.org/10.2307/4615733
72. Kornmeier J, Ehm W, Bigalke H, Bach M. Discontinuous presentation of ambiguous figures: How interstimulus-interval durations affect reversal dynamics and ERPs. Psychophysiology. 2007;44: 552–60. doi: 10.1111/j.1469-8986.2007.00525.x 17451493
73. Kornmeier J, Pfaffle M, Bach M. Necker cube: Stimulus-related (low-level) and percept-related (high-level) EEG signatures early in occipital cortex. J Vis. 2011;11: 1–11. doi: 10.1167/11.9.12 21865340
74. Kornmeier J, Bach M. EEG correlates of perceptual reversals in Boring’s ambiguous old/young woman stimulus. Perception. 2014;0: 0–0. doi: 10.1068/p7741
75. Pitts MA, Nerger JL, Davis TJR. Electrophysiological correlates of perceptual reversals for three different types of multistable images. J Vis. 2007;7: 1–14.
76. Britz J, Pitts MA, Michel CM. Right parietal brain activity precedes perceptual alternation during binocular rivalry. Hum Brain Mapp. 2010;32: 1432–1442. doi: 10.1002/hbm.21117 20690124
77. Intaite M, Koivisto M, Ruksenas O, Revonsuo A. Reversal negativity and bistable stimuli: Attention, awareness, or something else? Brain Cogn. 2010;74: 24–34. doi: 10.1016/j.bandc.2010.06.002 20598419
78. Intaite M, Koivisto M, Revonsuo A. Perceptual reversals of Necker stimuli during intermittent presentation with limited attentional resources. Psychophysiology. 2013;50: 82–96. doi: 10.1111/j.1469-8986.2012.01486.x 23215774
79. Russo E, De Pascalis V. Individual variability in perceptual switching behaviour is associated with reversal-related EEG modulations. Clin Neurophysiol. 2016;127: 479–489. doi: 10.1016/j.clinph.2015.06.003 26105685
80. Sandberg K, Barnes GR, Bahrami B, Kanai R, Overgaard M, Rees G. Distinct MEG correlates of conscious experience, perceptual reversals and stabilization during binocular rivalry. NeuroImage. 2014;100: 161–175. doi: 10.1016/j.neuroimage.2014.06.023 24945667
81. Noest AJ, van Ee R, Nijs MM, van Wezel RJ. Percept-choice sequences driven by interrupted ambiguous stimuli: a low-level neural model. J Vis. 2007;7: 10. doi: 10.1167/7.8.10 17685817
82. Orbach J, Zucker E, Olson R. Reversibility of the Necker cube: VII.: Reversal rate as a function of figure-on and figure-off durations. Percept Mot Ski. 1966;22: 615–618.
83. Leopold DA, Wilke M, Maier A, Logothetis NK. Stable perception of visually ambiguous patterns. Nat Neurosci. 2002;5: 605–609. doi: 10.1038/nn851 11992115
84. Maier A, Wilke M, Logothetis NK, Leopold DA. Perception of temporally interleaved ambiguous patterns. Curr Biol. 2003;13: 1076–85. doi: 10.1016/s0960-9822(03)00414-7 12842006
85. Pastukhov A, Braun J. A short-term memory of multi-stable perception. J Vis. 2008;8: 7 1–14. doi: 10.1167/8.13.7 19146337
86. Pastukhov A, Braun J. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation. Atten Percept Psychophys. 2013;75: 322–340. doi: 10.3758/s13414-012-0390-0 23150214
87. Pastukhov A. Perception and the strongest sensory memory trace of multi-stable displays both form shortly after the stimulus onset. Atten Percept Psychophys. 2016;78: 674–684. doi: 10.3758/s13414-015-1004-4 26542402
88. Basar-Eroglu C, Strüber D, Stadler M, Kruse E. Multistable visual perception induces a slow positive EEG wave. Intern J Neurosci. 1993;73: 139–151.
89. Mathes B, Struber D, Stadler MA, Basar-Eroglu C. Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neurosci Lett. 2006;402: 145–9. doi: 10.1016/j.neulet.2006.03.063 16630691
90. Toppino TC, Long GM. Selective adaptation with reversible figures: don’t change that channel. Percept Psychophys. 1987;42: 37–48. doi: 10.3758/bf03211512 3658636
91. Long GM, Toppino TC, Mondin GW. Prime time: fatigue and set effects in the perception of reversible figures. Percept Psychophys. 1992;52: 609–16. doi: 10.3758/bf03211697 1287566
92. Klink PC, van Ee R, Nijs MM, Brouwer GJ, Noest AJ, van Wezel RJ. Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. J Vis. 2008;8: 16 1–18. doi: 10.1167/8.5.16 18842087
93. Braun J, Mattia M. Attractors and noise: twin drivers of decisions and multistability. Neuroimage. 2010;52: 740–51. doi: 10.1016/j.neuroimage.2009.12.126 20083212
94. Pastukhov A, Lissner A, Braun J. Perceptual adaptation to structure-from-motion depends on the size of adaptor and probe objects, but not on the similarity of their shapes. Atten Percept Psychophys. 2014;76: 473–488. doi: 10.3758/s13414-013-0567-1 24178065
95. Borsellino A, De Marco A, Allazetta A, Rinesi S, Bartolini B. Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik. 1972;10: 139–144. doi: 10.1007/BF00290512 5021011
96. Kanai R, Bahrami B, Rees G. Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr Biol. 2010;20: 1626–30. doi: 10.1016/j.cub.2010.07.027 20727757
97. Patel V, Stuit S, Blake R. Individual differences in the temporal dynamics of binocular rivalry and stimulus rivalry. Psychon Bull Rev. 2015;22: 476–482. doi: 10.3758/s13423-014-0695-1 25092387
98. Brascamp JW, Becker MW, Hambrick DZ. Revisiting individual differences in the time course of binocular rivalry. J Vis. 2018;18: 3. doi: 10.1167/18.7.3 29971348
99. Cao T, Wang L, Sun Z, Engel SA, He S. The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights from Bistable Perception. Front Psychol. 2018;9. doi: 10.3389/fpsyg.2018.00589 29740374
100. Tsal Y, Kolbet L. Disambiguating ambiguous figures by selective attention. Q J Exp Psychol. 1985;12: 97–136.
101. Horlitz KL, O’Leary A. Satiation or availability? Effects of attention, memory, and imagery on the perception of ambiguous figures. Percept Psychophys. 1993;53: 668–81. doi: 10.3758/bf03211743 8332433
102. Long GM, Olszweski AD. To reverse or not to reverse: when is an ambiguous figure not ambiguous? Am J Psychol. 1999;112: 41–71. 10696278
103. Meng M, Tong F. Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. J Vis. 2004;4: 539–51. doi: 10.1167/4.7.2 15330700
104. Kanai R, Moradi F, Shimojo S, Verstraten FA. Perceptual alternation induced by visual transients. Perception. 2005;34: 803–22. doi: 10.1068/p5245 16124267
105. Brascamp JW, Knapen TH, Kanai R, van Ee R, van den Berg AV. Flash suppression and flash facilitation in binocular rivalry. J Vis. 2007;7: 12 1–12.
106. Gale AG, Findlay JM. Eye movement patterns in viewing ambiguous figures. In: Groner R, Menz C, Fischer DF, Monty RA, editors. Eye movements and psychological functions: international views. Hillsdale, NJ: Erlbaum; 1983. pp. 145–168.
107. Ito J, Nikolaev AR, Luman M, Aukes MF, Nakatani C, van Leeuwen C. Perceptual switching, eye movements, and the bus paradox. Perception. 2003;32: 681–98. doi: 10.1068/p5052 12892429
108. Einhauser W, Martin KAC, Konig P. Are switches in perception of the Necker cube related to eye position? Eur J Neurosci. 2004;20: 2811–2818. doi: 10.1111/j.1460-9568.2004.03722.x 15548224
109. Einhauser W, Stout J, Koch C, Carter O. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry. Proc Natl Acad Sci. 2008;105: 1704–1709. doi: 10.1073/pnas.0707727105 18250340
110. van Dam LC, van Ee R. The role of (micro)saccades and blinks in perceptual bi-stability from slant rivalry. Vis Res. 2005;45: 2417–35. doi: 10.1016/j.visres.2005.03.013 15894347
111. van Dam LC, van Ee R. The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vis Res. 2006;46: 787–99. doi: 10.1016/j.visres.2005.10.011 16309727
112. Hesselmann G, Kell CA, Eger E, Kleinschmidt A. Spontaneous local variations in ongoing neural activity bias perceptual decisions. Proc Natl Acad Sci U A. 2008;105: 10984–9. doi: 10.1073/pnas.0712043105 18664576
113. Ehm W, Bach M, Kornmeier J. What role for gamma oscillations in the perception of ambiguous figures? European Conference on Visual Perception (ECVP). Perception; 2008. p. 116.
114. Ehm W, Bach M, Kornmeier J. Ambiguous figures and binding: EEG frequency modulations during multistable perception. Psychophysiology. 2011;48: 547–58. doi: 10.1111/j.1469-8986.2010.01087.x 20796247
115. Sterzer P, Kleinschmidt A, Rees G. The neural bases of multistable perception. Trends Cogn Sci. 2009;13: 310–8. doi: 10.1016/j.tics.2009.04.006 19540794
116. Dehaene S, Changeux JP. Experimental and theoretical approaches to conscious processing. Neuron. 2011;70: 200–27. doi: 10.1016/j.neuron.2011.03.018 21521609
117. Cahn BR, Polich J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull. 2006;132: 180–211. doi: 10.1037/0033-2909.132.2.180 16536641
118. Jo H-G, Malinowski P, Schmidt S. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators. Front Hum Neurosci. 2017;11. doi: 10.3389/fnhum.2017.00011
119. Berkovich-Ohana A, Glicksohn J, Goldstein A. Mindfulness-induced changes in gamma band activity–Implications for the default mode network, self-reference and attention. Clin Neurophysiol. 2012;123: 700–710. doi: 10.1016/j.clinph.2011.07.048 21940201
120. Garrison KA, Santoyo JF, Davis JH, Thornhill TA, Kerr CE, Brewer JA. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report. Front Hum Neurosci. 2013;7. doi: 10.3389/fnhum.2013.00440 23964222
121. Scheibner HJ, Bogler C, Gleich T, Haynes J-D, Bermpohl F. Internal and external attention and the default mode network. NeuroImage. 2017;148: 381–389. doi: 10.1016/j.neuroimage.2017.01.044 28110087
122. Winter U, LeVan P, Borghardt TL, Burak A, Wittmann M, Leyens MY, et al. Content-free Awareness: EEG-fcMRI Correlates of Consciousness as such in an Expert Meditator. submitted.
123. Mamassian P. Visual Confidence. Annu Rev Vis Sci. 2016;2. doi: 10.1146/annurev-vision-111815-114630 28532359
124. Frenkel-Brunswik E. Intolerance of ambiguity as an emotional perceptual personality variable. J Pers. 1949;18: 108–143.
125. Atmanspacher H, Fach W. Acategoriality as Mental Instability. J Mind Behav. 2005;26: 161–186.
126. Feil D, Atmanspacher H. Acategorial states in a representational theory of mental processes. J Conscious Stud. 2010;17: 72–101.
127. Prakash R, Dubey I, Abhishek P, Gupta SK, Rastogi P, Siddiqui SV. LONG-TERM VIHANGAM YOGA MEDITATION AND SCORES ON TESTS OF ATTENTION 1. Percept Mot Skills. 2010;110: 1139–1148. doi: 10.2466/pms.110.C.1139-1148 20866002
128. Linares Gutierrez D, Kübel S, Giersch A, Schmidt S, Meissner K, Wittmann M. Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration. Behav Sci. 2019;9: 51. doi: 10.3390/bs9050051 31067755
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy