Risk factor-based subphenotyping of heart failure in the community
Autoři:
Charlotte Andersson aff001; Asya Lyass aff001; Vanessa Xanthakis aff001; Martin G. Larson aff001; Gary F. Mitchell aff006; Susan Cheng aff001; Ramachandran S. Vasan aff001
Působiště autorů:
The Framingham Heart Study, Framingham, Massachusetts, United States of America
aff001; Department of Cardiology, Herlev and Gentofte Hospital, Hellerup, Denmark
aff002; Section of Cardiovascular Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
aff003; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
aff004; Sections of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
aff005; Cardiovascular Engineering, Inc., Norwood, Massachusetts, United States of America
aff006; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
aff007; Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, United States of America
aff008
Vyšlo v časopise:
PLoS ONE 14(10)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222886
Souhrn
Background
Heart failure (HF) is a heterogeneous clinical syndrome with varying prognosis. Subphenotyping of HF is a research priority to advance our understanding of the syndrome. We formulated a subphenotyping schema and compared long-term mortality risk among the HF subphenotypes in the community-based Framingham Study.
Methods and results
In hierarchical order, we grouped participants with new-onset HF (stratified by HF with reduced [HFrEF] vs. preserved ejection fraction [HFpEF]) according to the presence of: (1) coronary heart disease (CHD), (2) metabolic syndrome (MetS), (3) hypertension, and (4) ‘other’ causes. Age at HF onset was lowest in people with the MetS (mean 76 vs. 77 years for HFrEF and HFpEF, respectively) and highest in those with hypertension only (mean 82 and 85 years for HFrEF and HFpEF, respectively). For HFrEF, 10-year cumulative mortality and hazards ratios [HR] were 87% for CHD (n = 219; referent group), 88% for MetS (n = 105; HR 0.95 [95% CI 0.73–1.23]), 82% for hypertension (n = 104; HR 0.71 [0.55–0.91]), and 78% for other (n = 37; HR 0.81 [0.55–1.19]). Corresponding 10-year cumulative mortality and HR data for HFpEF were: 85% for CHD (n = 84; referent), 83% for MetS (n = 118; HR 0.98 [0.72–1.33]), 81% for hypertension (n = 127; HR 0.71 [0.52–0.95]), and 76% for other (n = 43; HR 0.76 [0.50–1.14]). In a sample without overt heart failure (n = 5536), several echocardiographic and vascular indices showed graded worsening of age- and sex adjusted-values among those having CHD, MetS, hypertension, or obesity, compared with individuals not having these risk factors.
Conclusions
HF subphenotypes characterized by the presence of CHD or metabolic syndrome present at a younger age and are marked by greater mortality risk. The clinical utility of the proposed subphenotyping schema warrants further research.
Klíčová slova:
Blood pressure – Cardiovascular diseases – Coronary heart disease – Death rates – Heart failure – Hypertension – Medical risk factors – Metabolic syndrome
Zdroje
1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137(12):e67–e492. doi: 10.1161/CIR.0000000000000558 29386200
2. Ahmad T, Pencina MJ, Schulte PJ, O’Brien E, Whellan DJ, Pina IL, et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J Am Coll Cardiol. 2014;64(17):1765–74. doi: 10.1016/j.jacc.2014.07.979 25443696
3. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation. 2015;131(3):269–79. doi: 10.1161/CIRCULATIONAHA.114.010637 25398313
4. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, et al. Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail. 2015;17(9):925–35. doi: 10.1002/ejhf.327 26250359
5. Tromp J, Ouwerkerk W, Demissei BG, Anker SD, Cleland JG, Dickstein K, et al. Novel endotypes in heart failure: effects on guideline-directed medical therapy. Eur Heart J. 2018;39(48):4269–76. doi: 10.1093/eurheartj/ehy712 30551207
6. Dawber TR, Meadors GF, Moore FE Jr. Epidemiological approaches to heart disease: the Framingham Study. Am J Public Health Nations Health. 1951;41(3):279–81. doi: 10.2105/ajph.41.3.279 14819398
7. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The Framingham Offspring Study. Design and preliminary data. Prev Med. 1975;4(4):518–25. doi: 10.1016/0091-7435(75)90037-7 1208363
8. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, et al. The Third Generation Cohort of the National Heart, Lung, and Blood Institute’s Framingham Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 2007;165(11):1328–35. doi: 10.1093/aje/kwm021 17372189
9. Andersson C, Johnson AD, Benjamin EJ, Levy D, Vasan RS. 70-year legacy of the Framingham Heart Study. Nat Rev Cardiol. 2019.
10. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52. doi: 10.1161/01.HYP.0000107251.49515.c2 14656957
11. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005;67(6):2089–100. doi: 10.1111/j.1523-1755.2005.00365.x 15882252
12. Toto RD. Microalbuminuria: definition, detection, and clinical significance. J Clin Hypertens (Greenwich). 2004;6(11 Suppl 3):2–7.
13. Cheng S, McCabe EL, Larson MG, Merz AA, Osypiuk E, Lehman BT, et al. Distinct Aspects of Left Ventricular Mechanical Function Are Differentially Associated With Cardiovascular Outcomes and All-Cause Mortality in the Community. J Am Heart Assoc. 2015;4(10):e002071. doi: 10.1161/JAHA.115.002071 26508740
14. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, et al. Reproducibility of speckle-tracking-based strain measures of left ventricular function in a community-based study. J Am Soc Echocardiogr. 2013;26(11):1258–66 e2. doi: 10.1016/j.echo.2013.07.002 23953701
15. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. doi: 10.1016/j.echo.2018.06.004 30282592
16. Ho JE, McCabe EL, Wang TJ, Larson MG, Levy D, Tsao C, et al. Cardiometabolic Traits and Systolic Mechanics in the Community. Circ Heart Fail. 2017;10(5).
17. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57(6):450–8. doi: 10.1016/0002-9149(86)90771-x 2936235
18. Mitchell GF, Izzo JL Jr., Lacourciere Y, Ouellet JP, Neutel J, Qian C, et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension: results of the conduit hemodynamics of omapatrilat international research study. Circulation. 2002;105(25):2955–61. doi: 10.1161/01.cir.0000020500.77568.3c 12081987
19. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. doi: 10.1002/ejhf.592 27207191
20. Lindman BR, Davila-Roman VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64(6):541–9. doi: 10.1016/j.jacc.2014.05.030 25104521
21. Tsujimoto T, Kajio H. Abdominal Obesity Is Associated With an Increased Risk of All-Cause Mortality in Patients With HFpEF. J Am Coll Cardiol. 2017;70(22):2739–49. doi: 10.1016/j.jacc.2017.09.1111 29191321
22. Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid Med Cell Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195 28751931
23. Louridas GE, Lourida KG. A conceptual paradigm of heart failure and systems biology approach. Int J Cardiol. 2012;159(1):5–13. doi: 10.1016/j.ijcard.2011.07.014 21794935
24. Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, et al. Biological Phenotypes of Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2017;70(17):2186–200. doi: 10.1016/j.jacc.2017.09.006 29050567
25. Vaduganathan M, Patel RB, Michel A, Shah SJ, Senni M, Gheorghiade M, et al. Mode of Death in Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol. 2017;69(5):556–69. doi: 10.1016/j.jacc.2016.10.078 28153111
26. Kotecha D, Manzano L, Krum H, Rosano G, Holmes J, Altman DG, et al. Effect of age and sex on efficacy and tolerability of beta blockers in patients with heart failure with reduced ejection fraction: individual patient data meta-analysis. BMJ. 2016;353:i1855. doi: 10.1136/bmj.i1855 27098105
27. Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019.
28. Burnett H, Earley A, Voors AA, Senni M, McMurray JJ, Deschaseaux C, et al. Thirty Years of Evidence on the Efficacy of Drug Treatments for Chronic Heart Failure With Reduced Ejection Fraction: A Network Meta-Analysis. Circ Heart Fail. 2017;10(1).
29. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92. doi: 10.1056/NEJMoa1313731 24716680
30. Komajda M, Isnard R, Cohen-Solal A, Metra M, Pieske B, Ponikowski P, et al. Effect of ivabradine in patients with heart failure with preserved ejection fraction: the EDIFY randomized placebo-controlled trial. Eur J Heart Fail. 2017;19(11):1495–503. doi: 10.1002/ejhf.876 28462519
31. Borlaug BA, Obokata M. Is it time to recognize a new phenotype? Heart failure with preserved ejection fraction with pulmonary vascular disease. Eur Heart J. 2017;38(38):2874–8. doi: 10.1093/eurheartj/ehx184 28431020
32. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation. 2017;136(1):6–19. doi: 10.1161/CIRCULATIONAHA.116.026807 28381470
33. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18. doi: 10.1016/j.hfc.2014.04.008 24975905
34. Zheng SL, Chan FT, Nabeebaccus AA, Shah AM, McDonagh T, Okonko DO, et al. Drug treatment effects on outcomes in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Heart. 2018;104(5):407–15. doi: 10.1136/heartjnl-2017-311652 28780577
35. Aragam KG, Chaffin M, Levinson RT, McDermott G, Choi SH, Shoemaker MB, et al. Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery. Circulation. 2018; doi: 10.1161/CIRCULATIONAHA.118.035774 [Epub ahead of print]. 30586722
36. Greene SJ, Hernandez AF, Dunning A, Ambrosy AP, Armstrong PW, Butler J, et al. Hospitalization for Recently Diagnosed Versus Worsening Chronic Heart Failure: From the ASCEND-HF Trial. J Am Coll Cardiol. 2017;69(25):3029–39. doi: 10.1016/j.jacc.2017.04.043 28641792
37. Andersson C, Lyass A, Lin H, Kober L, Larson MG, Vasan RS. Association of Genetic Variation in Coronary Artery Disease-Related Loci With the Risk of Heart Failure With Preserved Versus Reduced Ejection Fraction. Circulation. 2018;137(12):1290–2. doi: 10.1161/CIRCULATIONAHA.117.032491 29555712
38. Borlaug BA. Is HFpEF One Disease or Many? J Am Coll Cardiol. 2016;67(6):671–3. doi: 10.1016/j.jacc.2015.11.045 26868692
Článek vyšel v časopise
PLOS One
2019 Číslo 10
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Correction: Low dose naltrexone: Effects on medication in rheumatoid and seropositive arthritis. A nationwide register-based controlled quasi-experimental before-after study
- Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity
- Experimentally validated simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning
- Risk factors associated with IgA vasculitis with nephritis (Henoch–Schönlein purpura nephritis) progressing to unfavorable outcomes: A meta-analysis
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy